Polynomial Invariants |
#Aut |
Splitting Field |
Number of
|
j |
Ramification Polygon |
Slopes |
Residual Polynomials |
eT |
fT |
#Gal |
Gal |
Polynomials |
Extensions
|
1 | {(1,1), (9,0)} | [ 1/8 ] | (z+1) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 | 8·32 | 8·32 |
(z+δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(2δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+2) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+2δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(2δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
2 | {(1,2), (9,0)} | [ 1/4 ] | (z2+1) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 | 8·32 | 8·32 |
(z2+δ) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+(δ+1)) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+(2δ+1)) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+2) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+2δ) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+(2δ+2)) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
(z2+(δ+2)) | 1 | 1 | 4 | 4·32 | [36,9] = 9T9 | 1 | 32 |
4 | {(1,4), (3,3), (9,0)} | [ 1/2 ] | (z4+z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 | 64·32 | 8·34 |
(z4+δz+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+1) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+(δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+(2δ+1)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+2) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+2δ) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+(2δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+δz+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+1)z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+1)z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+2δz+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(2δ+2)z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
(z4+(δ+2)z+(δ+2)) | 1 | 3 | 2 | 2·33 | [54,5] = 9T11 | 1 | 32 |
{(1,4), (9,0)} | [ 1/2 ] | (z4+1) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 | 8·32 |
(z4+δ) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+(δ+1)) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+(2δ+1)) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+2) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+2δ) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+(2δ+2)) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z4+(δ+2)) | 1 | 1 | 2 | 2·32 | [18,4] = 9T5 | 1 | 32 |
5 | {(1,5), (3,3), (9,0)} | [ 1, 1/2 ] | (z2+1, z3+1) | 3 | 1 | 2 | | | 3 | 32 | 64·32 | 8·34 |
(δz2+1, z3+δ) | 1 | 1 | 2 | | | 1 | 32 |
((δ+1)z2+1, z3+(δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+1)z2+1, z3+(2δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
(2z2+1, z3+2) | 3 | 1 | 2 | | | 3 | 32 |
(2δz2+1, z3+2δ) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+2)z2+1, z3+(2δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
((δ+2)z2+1, z3+(δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
(z2+δ, z3+1) | 1 | 1 | 2 | | | 1 | 32 |
(δz2+δ, z3+δ) | 3 | 1 | 2 | | | 3 | 32 |
((δ+1)z2+δ, z3+(δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+1)z2+δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
(2z2+δ, z3+2) | 1 | 1 | 2 | | | 1 | 32 |
(2δz2+δ, z3+2δ) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+2)z2+δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
((δ+2)z2+δ, z3+(δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
(z2+(δ+1), z3+1) | 3 | 1 | 2 | | | 3 | 32 |
(δz2+(δ+1), z3+δ) | 1 | 1 | 2 | | | 1 | 32 |
((δ+1)z2+(δ+1), z3+(δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+1)z2+(δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
(2z2+(δ+1), z3+2) | 3 | 1 | 2 | | | 3 | 32 |
(2δz2+(δ+1), z3+2δ) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+2)z2+(δ+1), z3+(2δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
((δ+2)z2+(δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
(z2+(2δ+1), z3+1) | 1 | 1 | 2 | | | 1 | 32 |
(δz2+(2δ+1), z3+δ) | 3 | 1 | 2 | | | 3 | 32 |
((δ+1)z2+(2δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+1)z2+(2δ+1), z3+(2δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
(2z2+(2δ+1), z3+2) | 1 | 1 | 2 | | | 1 | 32 |
(2δz2+(2δ+1), z3+2δ) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+2)z2+(2δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
((δ+2)z2+(2δ+1), z3+(δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
(z2+2, z3+1) | 3 | 1 | 2 | | | 3 | 32 |
(δz2+2, z3+δ) | 1 | 1 | 2 | | | 1 | 32 |
((δ+1)z2+2, z3+(δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+1)z2+2, z3+(2δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
(2z2+2, z3+2) | 3 | 1 | 2 | | | 3 | 32 |
(2δz2+2, z3+2δ) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+2)z2+2, z3+(2δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
((δ+2)z2+2, z3+(δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
(z2+2δ, z3+1) | 1 | 1 | 2 | | | 1 | 32 |
(δz2+2δ, z3+δ) | 3 | 1 | 2 | | | 3 | 32 |
((δ+1)z2+2δ, z3+(δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+1)z2+2δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
(2z2+2δ, z3+2) | 1 | 1 | 2 | | | 1 | 32 |
(2δz2+2δ, z3+2δ) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+2)z2+2δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
((δ+2)z2+2δ, z3+(δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
(z2+(2δ+2), z3+1) | 3 | 1 | 2 | | | 3 | 32 |
(δz2+(2δ+2), z3+δ) | 1 | 1 | 2 | | | 1 | 32 |
((δ+1)z2+(2δ+2), z3+(δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+1)z2+(2δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
(2z2+(2δ+2), z3+2) | 3 | 1 | 2 | | | 3 | 32 |
(2δz2+(2δ+2), z3+2δ) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+2)z2+(2δ+2), z3+(2δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
((δ+2)z2+(2δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
(z2+(δ+2), z3+1) | 1 | 1 | 2 | | | 1 | 32 |
(δz2+(δ+2), z3+δ) | 3 | 1 | 2 | | | 3 | 32 |
((δ+1)z2+(δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 1 | 32 |
((2δ+1)z2+(δ+2), z3+(2δ+1)) | 3 | 1 | 2 | | | 3 | 32 |
(2z2+(δ+2), z3+2) | 1 | 1 | 2 | | | 1 | 32 |
(2δz2+(δ+2), z3+2δ) | 3 | 1 | 2 | | | 3 | 32 |
((2δ+2)z2+(δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 1 | 32 |
((δ+2)z2+(δ+2), z3+(δ+2)) | 3 | 1 | 2 | | | 3 | 32 |
{(1,5), (9,0)} | [ 5/8 ] | (z+1) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 | 8·32 |
(z+δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(2δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+2) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+2δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(2δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
(z+(δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 1 | 32 |
7 | {(1,7), (3,3), (9,0)} | [ 2, 1/2 ] | (z2+1, z3+1) | 3 | 1 | 2 | | | 33 | 34 | 64·34 | 8·36 |
(δz2+1, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z2+1, z3+(δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+1)z2+1, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z2+1, z3+2) | 3 | 1 | 2 | | | 33 | 34 |
(2δz2+1, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z2+1, z3+(2δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
((δ+2)z2+1, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z2+δ, z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz2+δ, z3+δ) | 3 | 1 | 2 | | | 33 | 34 |
((δ+1)z2+δ, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z2+δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
(2z2+δ, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz2+δ, z3+2δ) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+2)z2+δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z2+δ, z3+(δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
(z2+(δ+1), z3+1) | 3 | 1 | 2 | | | 33 | 34 |
(δz2+(δ+1), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z2+(δ+1), z3+(δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+1)z2+(δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z2+(δ+1), z3+2) | 3 | 1 | 2 | | | 33 | 34 |
(2δz2+(δ+1), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z2+(δ+1), z3+(2δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
((δ+2)z2+(δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z2+(2δ+1), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz2+(2δ+1), z3+δ) | 3 | 1 | 2 | | | 33 | 34 |
((δ+1)z2+(2δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z2+(2δ+1), z3+(2δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
(2z2+(2δ+1), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz2+(2δ+1), z3+2δ) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+2)z2+(2δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z2+(2δ+1), z3+(δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
(z2+2, z3+1) | 3 | 1 | 2 | | | 33 | 34 |
(δz2+2, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z2+2, z3+(δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+1)z2+2, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z2+2, z3+2) | 3 | 1 | 2 | | | 33 | 34 |
(2δz2+2, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z2+2, z3+(2δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
((δ+2)z2+2, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z2+2δ, z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz2+2δ, z3+δ) | 3 | 1 | 2 | | | 33 | 34 |
((δ+1)z2+2δ, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z2+2δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
(2z2+2δ, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz2+2δ, z3+2δ) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+2)z2+2δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z2+2δ, z3+(δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
(z2+(2δ+2), z3+1) | 3 | 1 | 2 | | | 33 | 34 |
(δz2+(2δ+2), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z2+(2δ+2), z3+(δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+1)z2+(2δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z2+(2δ+2), z3+2) | 3 | 1 | 2 | | | 33 | 34 |
(2δz2+(2δ+2), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z2+(2δ+2), z3+(2δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
((δ+2)z2+(2δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z2+(δ+2), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz2+(δ+2), z3+δ) | 3 | 1 | 2 | | | 33 | 34 |
((δ+1)z2+(δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z2+(δ+2), z3+(2δ+1)) | 3 | 1 | 2 | | | 33 | 34 |
(2z2+(δ+2), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz2+(δ+2), z3+2δ) | 3 | 1 | 2 | | | 33 | 34 |
((2δ+2)z2+(δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z2+(δ+2), z3+(δ+2)) | 3 | 1 | 2 | | | 33 | 34 |
{(1,7), (9,0)} | [ 7/8 ] | (z+1) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 | 8·34 |
(z+δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+(δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+(2δ+1)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+2) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+2δ) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+(2δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
(z+(δ+2)) | 1 | 1 | 8 | 8·32 | [72,39] = 9T15 | 32 | 34 |
8 | {(1,8), (3,3), (9,0)} | [ 5/2, 1/2 ] | (z+1, z3+1) | 1 | 1 | 2 | | | 32 | 34 | 64·34 | 8·36 |
(δz+1, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+1, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+1, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+1, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+1, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+1, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+1, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+δ, z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+δ, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+δ, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+δ, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+δ, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+δ, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+δ, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(δ+1), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+(δ+1), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+(δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(δ+1), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+(δ+1), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+(δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(2δ+1), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+(2δ+1), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(2δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+(2δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(2δ+1), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+(2δ+1), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(2δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+(2δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+2, z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+2, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+2, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+2, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+2, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+2, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+2, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+2, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+2δ, z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+2δ, z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+2δ, z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+2δ, z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+2δ, z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+2δ, z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+2δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+2δ, z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(2δ+2), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+(2δ+2), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(2δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+(2δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(2δ+2), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+(2δ+2), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(2δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+(2δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(δ+2), z3+1) | 1 | 1 | 2 | | | 32 | 34 |
(δz+(δ+2), z3+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+1)z+(δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(δ+2), z3+2) | 1 | 1 | 2 | | | 32 | 34 |
(2δz+(δ+2), z3+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
((δ+2)z+(δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
{(1,8), (3,6), (9,0)} | [ 1 ] | (z8+z2+1) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 | 64·32 |
(z8+δz2+1) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+1)z2+1) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+1)z2+1) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2z2+1) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2δz2+1) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+2)z2+1) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+2)z2+1) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+z2+δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+δz2+δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+1)z2+δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+1)z2+δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2z2+δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2δz2+δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+2)z2+δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+2)z2+δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+z2+(δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+δz2+(δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+1)z2+(δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+1)z2+(δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2z2+(δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2δz2+(δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+2)z2+(δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+2)z2+(δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+z2+(2δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+δz2+(2δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+1)z2+(2δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+1)z2+(2δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2z2+(2δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2δz2+(2δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+2)z2+(2δ+1)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+2)z2+(2δ+1)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+δz2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+1)z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+1)z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2δz2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+2)z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+2)z2+2) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+z2+2δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+δz2+2δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+1)z2+2δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+1)z2+2δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2z2+2δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2δz2+2δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+2)z2+2δ) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+2)z2+2δ) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+z2+(2δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+δz2+(2δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+1)z2+(2δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+1)z2+(2δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2z2+(2δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2δz2+(2δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+2)z2+(2δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+2)z2+(2δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+z2+(δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+δz2+(δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(δ+1)z2+(δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(2δ+1)z2+(δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+2z2+(δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+2δz2+(δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
(z8+(2δ+2)z2+(δ+2)) | 1 | 3 | 1 | 33 | [27,3] = 9T7 | 1 | 32 |
(z8+(δ+2)z2+(δ+2)) | 3 | 3 | 1 | 33 | [27,3] = 9T7 | 3 | 32 |
{(1,8), (9,0)} | [ 1 ] | (z8+1) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 | 8·32 |
(z8+δ) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z8+(δ+1)) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z8+(2δ+1)) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z8+2) | 9 | 2 | 1 | 2·32 | [18,4] = 9T5 | 32 | 32 |
(z8+2δ) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z8+(2δ+2)) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
(z8+(δ+2)) | 1 | 2 | 1 | 2·32 | [18,4] = 9T5 | 1 | 32 |
10 | {(1,10), (3,3), (9,0)} | [ 7/2, 1/2 ] | (z+1, z3+1) | 1 | 1 | 2 | | | 34 | 36 | 64·36 | 8·38 |
(δz+1, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+1, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+1, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+1, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+1, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+1, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+1, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+δ, z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+δ, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+δ, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+δ, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+δ, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+δ, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(δ+1), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+(δ+1), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+(δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+(δ+1), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+(δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(2δ+1), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+(2δ+1), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(2δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+(2δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+(2δ+1), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(2δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+(2δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+2, z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+2, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+2, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+2, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+2, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+2, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+2, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+2δ, z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+2δ, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+2δ, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+2δ, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+2δ, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+2δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+2δ, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(2δ+2), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+(2δ+2), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(2δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+(2δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+(2δ+2), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(2δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+(2δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(δ+2), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz+(δ+2), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z+(δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz+(δ+2), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z+(δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
{(1,10), (3,6), (9,0)} | [ 2, 1 ] | (z2+1, z6+1) | {3,9} | 1 | 1 | | | 34 [!] | 34 | 64·34 |
(δz2+1, z6+δ) | 1 | 1 | 1 | | | 32 | 34 |
((δ+1)z2+1, z6+(δ+1)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((2δ+1)z2+1, z6+(2δ+1)) | 1 | 1 | 1 | | | 32 | 34 |
(2z2+1, z6+2) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(2δz2+1, z6+2δ) | 1 | 1 | 1 | | | 32 | 34 |
((2δ+2)z2+1, z6+(2δ+2)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((δ+2)z2+1, z6+(δ+2)) | 1 | 1 | 1 | | | 32 | 34 |
(z2+δ, z6+1) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(δz2+δ, z6+δ) | 3 | 1 | 1 | | | 33 | 34 |
((δ+1)z2+δ, z6+(δ+1)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((2δ+1)z2+δ, z6+(2δ+1)) | 3 | 1 | 1 | | | 33 | 34 |
(2z2+δ, z6+2) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(2δz2+δ, z6+2δ) | 3 | 1 | 1 | | | 33 | 34 |
((2δ+2)z2+δ, z6+(2δ+2)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((δ+2)z2+δ, z6+(δ+2)) | 3 | 1 | 1 | | | 33 | 34 |
(z2+(δ+1), z6+1) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(δz2+(δ+1), z6+δ) | 1 | 1 | 1 | | | 32 | 34 |
((δ+1)z2+(δ+1), z6+(δ+1)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((2δ+1)z2+(δ+1), z6+(2δ+1)) | 1 | 1 | 1 | | | 32 | 34 |
(2z2+(δ+1), z6+2) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(2δz2+(δ+1), z6+2δ) | 1 | 1 | 1 | | | 32 | 34 |
((2δ+2)z2+(δ+1), z6+(2δ+2)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((δ+2)z2+(δ+1), z6+(δ+2)) | 1 | 1 | 1 | | | 32 | 34 |
(z2+(2δ+1), z6+1) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(δz2+(2δ+1), z6+δ) | 3 | 1 | 1 | | | 33 | 34 |
((δ+1)z2+(2δ+1), z6+(δ+1)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((2δ+1)z2+(2δ+1), z6+(2δ+1)) | 3 | 1 | 1 | | | 33 | 34 |
(2z2+(2δ+1), z6+2) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(2δz2+(2δ+1), z6+2δ) | 3 | 1 | 1 | | | 33 | 34 |
((2δ+2)z2+(2δ+1), z6+(2δ+2)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((δ+2)z2+(2δ+1), z6+(δ+2)) | 3 | 1 | 1 | | | 33 | 34 |
(z2+2, z6+1) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(δz2+2, z6+δ) | 1 | 1 | 1 | | | 32 | 34 |
((δ+1)z2+2, z6+(δ+1)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((2δ+1)z2+2, z6+(2δ+1)) | 1 | 1 | 1 | | | 32 | 34 |
(2z2+2, z6+2) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(2δz2+2, z6+2δ) | 1 | 1 | 1 | | | 32 | 34 |
((2δ+2)z2+2, z6+(2δ+2)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((δ+2)z2+2, z6+(δ+2)) | 1 | 1 | 1 | | | 32 | 34 |
(z2+2δ, z6+1) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(δz2+2δ, z6+δ) | 3 | 1 | 1 | | | 33 | 34 |
((δ+1)z2+2δ, z6+(δ+1)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((2δ+1)z2+2δ, z6+(2δ+1)) | 3 | 1 | 1 | | | 33 | 34 |
(2z2+2δ, z6+2) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(2δz2+2δ, z6+2δ) | 3 | 1 | 1 | | | 33 | 34 |
((2δ+2)z2+2δ, z6+(2δ+2)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((δ+2)z2+2δ, z6+(δ+2)) | 3 | 1 | 1 | | | 33 | 34 |
(z2+(2δ+2), z6+1) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(δz2+(2δ+2), z6+δ) | 1 | 1 | 1 | | | 32 | 34 |
((δ+1)z2+(2δ+2), z6+(δ+1)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((2δ+1)z2+(2δ+2), z6+(2δ+1)) | 1 | 1 | 1 | | | 32 | 34 |
(2z2+(2δ+2), z6+2) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
(2δz2+(2δ+2), z6+2δ) | 1 | 1 | 1 | | | 32 | 34 |
((2δ+2)z2+(2δ+2), z6+(2δ+2)) | {3,9} | 1 | 1 | | | 34 [!] | 34 |
((δ+2)z2+(2δ+2), z6+(δ+2)) | 1 | 1 | 1 | | | 32 | 34 |
(z2+(δ+2), z6+1) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(δz2+(δ+2), z6+δ) | 3 | 1 | 1 | | | 33 | 34 |
((δ+1)z2+(δ+2), z6+(δ+1)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((2δ+1)z2+(δ+2), z6+(2δ+1)) | 3 | 1 | 1 | | | 33 | 34 |
(2z2+(δ+2), z6+2) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
(2δz2+(δ+2), z6+2δ) | 3 | 1 | 1 | | | 33 | 34 |
((2δ+2)z2+(δ+2), z6+(2δ+2)) | {1,3} | 1 | 1 | | | 33 [!] | 34 |
((δ+2)z2+(δ+2), z6+(δ+2)) | 3 | 1 | 1 | | | 33 | 34 |
11 | {(1,11), (3,3), (9,0)} | [ 4, 1/2 ] | (z2+1, z3+1) | 3 | 1 | 2 | | | 35 | 36 | 64·36 | 8·38 |
(δz2+1, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z2+1, z3+(δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+1)z2+1, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+1, z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2δz2+1, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z2+1, z3+(2δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
((δ+2)z2+1, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z2+δ, z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz2+δ, z3+δ) | 3 | 1 | 2 | | | 35 | 36 |
((δ+1)z2+δ, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z2+δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz2+δ, z3+2δ) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+2)z2+δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z2+δ, z3+(δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
(z2+(δ+1), z3+1) | 3 | 1 | 2 | | | 35 | 36 |
(δz2+(δ+1), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z2+(δ+1), z3+(δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+1)z2+(δ+1), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+(δ+1), z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2δz2+(δ+1), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z2+(δ+1), z3+(2δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
((δ+2)z2+(δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z2+(2δ+1), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz2+(2δ+1), z3+δ) | 3 | 1 | 2 | | | 35 | 36 |
((δ+1)z2+(2δ+1), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z2+(2δ+1), z3+(2δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+(2δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz2+(2δ+1), z3+2δ) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+2)z2+(2δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z2+(2δ+1), z3+(δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
(z2+2, z3+1) | 3 | 1 | 2 | | | 35 | 36 |
(δz2+2, z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z2+2, z3+(δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+1)z2+2, z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+2, z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2δz2+2, z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z2+2, z3+(2δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
((δ+2)z2+2, z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z2+2δ, z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz2+2δ, z3+δ) | 3 | 1 | 2 | | | 35 | 36 |
((δ+1)z2+2δ, z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z2+2δ, z3+(2δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+2δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz2+2δ, z3+2δ) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+2)z2+2δ, z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z2+2δ, z3+(δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
(z2+(2δ+2), z3+1) | 3 | 1 | 2 | | | 35 | 36 |
(δz2+(2δ+2), z3+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z2+(2δ+2), z3+(δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+1)z2+(2δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+(2δ+2), z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2δz2+(2δ+2), z3+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z2+(2δ+2), z3+(2δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
((δ+2)z2+(2δ+2), z3+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z2+(δ+2), z3+1) | 1 | 1 | 2 | | | 34 | 36 |
(δz2+(δ+2), z3+δ) | 3 | 1 | 2 | | | 35 | 36 |
((δ+1)z2+(δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+1)z2+(δ+2), z3+(2δ+1)) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+(δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2δz2+(δ+2), z3+2δ) | 3 | 1 | 2 | | | 35 | 36 |
((2δ+2)z2+(δ+2), z3+(2δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
((δ+2)z2+(δ+2), z3+(δ+2)) | 3 | 1 | 2 | | | 35 | 36 |
{(1,11), (3,6), (9,0)} | [ 5/2, 1 ] | (z+1, z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 | 64·34 |
(δz+1, z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+1, z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+1, z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+1, z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+1, z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+1, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+1, z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+δ, z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+δ, z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+δ, z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+δ, z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+δ, z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+δ, z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+δ, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+δ, z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(δ+1), z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+(δ+1), z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(δ+1), z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+(δ+1), z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(δ+1), z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+(δ+1), z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(δ+1), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+(δ+1), z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(2δ+1), z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+(2δ+1), z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(2δ+1), z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+(2δ+1), z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(2δ+1), z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+(2δ+1), z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(2δ+1), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+(2δ+1), z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+2, z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+2, z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+2, z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+2, z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+2, z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+2, z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+2, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+2, z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+2δ, z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+2δ, z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+2δ, z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+2δ, z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+2δ, z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+2δ, z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+2δ, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+2δ, z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(2δ+2), z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+(2δ+2), z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(2δ+2), z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+(2δ+2), z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(2δ+2), z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+(2δ+2), z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(2δ+2), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+(2δ+2), z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
(z+(δ+2), z6+1) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(δz+(δ+2), z6+δ) | 1 | 1 | 2 | | | 32 | 34 |
((δ+1)z+(δ+2), z6+(δ+1)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((2δ+1)z+(δ+2), z6+(2δ+1)) | 1 | 1 | 2 | | | 32 | 34 |
(2z+(δ+2), z6+2) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
(2δz+(δ+2), z6+2δ) | 1 | 1 | 2 | | | 32 | 34 |
((2δ+2)z+(δ+2), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 33 [!] | 34 |
((δ+2)z+(δ+2), z6+(δ+2)) | 1 | 1 | 2 | | | 32 | 34 |
12 | {(1,12), (3,3), (9,0)} | [ 9/2, 1/2 ] | (2z+1, z3+2) | 1 | 1 | 2 | | | 36 | 38 | 8·38 | 8·38 |
(2δz+δ, z3+2δ) | 1 | 1 | 2 | | | 36 | 38 |
((2δ+2)z+(δ+1), z3+(2δ+2)) | 1 | 1 | 2 | | | 36 | 38 |
((δ+2)z+(2δ+1), z3+(δ+2)) | 1 | 1 | 2 | | | 36 | 38 |
(z+2, z3+1) | 1 | 1 | 2 | | | 36 | 38 |
(δz+2δ, z3+δ) | 1 | 1 | 2 | | | 36 | 38 |
((δ+1)z+(2δ+2), z3+(δ+1)) | 1 | 1 | 2 | | | 36 | 38 |
((2δ+1)z+(δ+2), z3+(2δ+1)) | 1 | 1 | 2 | | | 36 | 38 |
13 | {(1,13), (3,6), (9,0)} | [ 7/2, 1 ] | (z+1, z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 | 64·36 | 8·38 |
(δz+1, z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+1, z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+1, z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+1, z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+1, z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+1, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+1, z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+δ, z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+δ, z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+δ, z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+δ, z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+δ, z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+δ, z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+δ, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+δ, z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(δ+1), z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+(δ+1), z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(δ+1), z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+(δ+1), z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+1), z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+(δ+1), z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(δ+1), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+(δ+1), z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(2δ+1), z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+(2δ+1), z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(2δ+1), z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+(2δ+1), z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+1), z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+(2δ+1), z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(2δ+1), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+(2δ+1), z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+2, z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+2, z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+2, z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+2, z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2, z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+2, z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+2, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+2, z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+2δ, z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+2δ, z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+2δ, z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+2δ, z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2δ, z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+2δ, z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+2δ, z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+2δ, z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(2δ+2), z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+(2δ+2), z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(2δ+2), z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+(2δ+2), z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+2), z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+(2δ+2), z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(2δ+2), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+(2δ+2), z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
(z+(δ+2), z6+1) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(δz+(δ+2), z6+δ) | 1 | 1 | 2 | | | 34 | 36 |
((δ+1)z+(δ+2), z6+(δ+1)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((2δ+1)z+(δ+2), z6+(2δ+1)) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+2), z6+2) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
(2δz+(δ+2), z6+2δ) | 1 | 1 | 2 | | | 34 | 36 |
((2δ+2)z+(δ+2), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 35 [!] | 36 |
((δ+2)z+(δ+2), z6+(δ+2)) | 1 | 1 | 2 | | | 34 | 36 |
{(1,13), (3,9), (9,0)} | [ 2, 3/2 ] | (2z2+1, z3+2) | 3 | 1 | 2 | | | 35 | 36 | 8·36 |
(2z2+δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+(δ+1), z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+(2δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+2, z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+2δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z2+(2δ+2), z3+2) | 3 | 1 | 2 | | | 35 | 36 |
(2z2+(δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
14 | {(1,14), (3,6), (9,0)} | [ 4, 1 ] | (z2+1, z6+1) | {3,9} | 1 | 1 | | | 36 [!] | 36 | 64·36 | 8·38 |
(δz2+1, z6+δ) | 1 | 1 | 1 | | | 34 | 36 |
((δ+1)z2+1, z6+(δ+1)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((2δ+1)z2+1, z6+(2δ+1)) | 1 | 1 | 1 | | | 34 | 36 |
(2z2+1, z6+2) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(2δz2+1, z6+2δ) | 1 | 1 | 1 | | | 34 | 36 |
((2δ+2)z2+1, z6+(2δ+2)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((δ+2)z2+1, z6+(δ+2)) | 1 | 1 | 1 | | | 34 | 36 |
(z2+δ, z6+1) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(δz2+δ, z6+δ) | 3 | 1 | 1 | | | 35 | 36 |
((δ+1)z2+δ, z6+(δ+1)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((2δ+1)z2+δ, z6+(2δ+1)) | 3 | 1 | 1 | | | 35 | 36 |
(2z2+δ, z6+2) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(2δz2+δ, z6+2δ) | 3 | 1 | 1 | | | 35 | 36 |
((2δ+2)z2+δ, z6+(2δ+2)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((δ+2)z2+δ, z6+(δ+2)) | 3 | 1 | 1 | | | 35 | 36 |
(z2+(δ+1), z6+1) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(δz2+(δ+1), z6+δ) | 1 | 1 | 1 | | | 34 | 36 |
((δ+1)z2+(δ+1), z6+(δ+1)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((2δ+1)z2+(δ+1), z6+(2δ+1)) | 1 | 1 | 1 | | | 34 | 36 |
(2z2+(δ+1), z6+2) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(2δz2+(δ+1), z6+2δ) | 1 | 1 | 1 | | | 34 | 36 |
((2δ+2)z2+(δ+1), z6+(2δ+2)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((δ+2)z2+(δ+1), z6+(δ+2)) | 1 | 1 | 1 | | | 34 | 36 |
(z2+(2δ+1), z6+1) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(δz2+(2δ+1), z6+δ) | 3 | 1 | 1 | | | 35 | 36 |
((δ+1)z2+(2δ+1), z6+(δ+1)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((2δ+1)z2+(2δ+1), z6+(2δ+1)) | 3 | 1 | 1 | | | 35 | 36 |
(2z2+(2δ+1), z6+2) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(2δz2+(2δ+1), z6+2δ) | 3 | 1 | 1 | | | 35 | 36 |
((2δ+2)z2+(2δ+1), z6+(2δ+2)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((δ+2)z2+(2δ+1), z6+(δ+2)) | 3 | 1 | 1 | | | 35 | 36 |
(z2+2, z6+1) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(δz2+2, z6+δ) | 1 | 1 | 1 | | | 34 | 36 |
((δ+1)z2+2, z6+(δ+1)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((2δ+1)z2+2, z6+(2δ+1)) | 1 | 1 | 1 | | | 34 | 36 |
(2z2+2, z6+2) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(2δz2+2, z6+2δ) | 1 | 1 | 1 | | | 34 | 36 |
((2δ+2)z2+2, z6+(2δ+2)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((δ+2)z2+2, z6+(δ+2)) | 1 | 1 | 1 | | | 34 | 36 |
(z2+2δ, z6+1) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(δz2+2δ, z6+δ) | 3 | 1 | 1 | | | 35 | 36 |
((δ+1)z2+2δ, z6+(δ+1)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((2δ+1)z2+2δ, z6+(2δ+1)) | 3 | 1 | 1 | | | 35 | 36 |
(2z2+2δ, z6+2) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(2δz2+2δ, z6+2δ) | 3 | 1 | 1 | | | 35 | 36 |
((2δ+2)z2+2δ, z6+(2δ+2)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((δ+2)z2+2δ, z6+(δ+2)) | 3 | 1 | 1 | | | 35 | 36 |
(z2+(2δ+2), z6+1) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(δz2+(2δ+2), z6+δ) | 1 | 1 | 1 | | | 34 | 36 |
((δ+1)z2+(2δ+2), z6+(δ+1)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((2δ+1)z2+(2δ+2), z6+(2δ+1)) | 1 | 1 | 1 | | | 34 | 36 |
(2z2+(2δ+2), z6+2) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
(2δz2+(2δ+2), z6+2δ) | 1 | 1 | 1 | | | 34 | 36 |
((2δ+2)z2+(2δ+2), z6+(2δ+2)) | {3,9} | 1 | 1 | | | 36 [!] | 36 |
((δ+2)z2+(2δ+2), z6+(δ+2)) | 1 | 1 | 1 | | | 34 | 36 |
(z2+(δ+2), z6+1) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(δz2+(δ+2), z6+δ) | 3 | 1 | 1 | | | 35 | 36 |
((δ+1)z2+(δ+2), z6+(δ+1)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((2δ+1)z2+(δ+2), z6+(2δ+1)) | 3 | 1 | 1 | | | 35 | 36 |
(2z2+(δ+2), z6+2) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
(2δz2+(δ+2), z6+2δ) | 3 | 1 | 1 | | | 35 | 36 |
((2δ+2)z2+(δ+2), z6+(2δ+2)) | {1,3} | 1 | 1 | | | 35 [!] | 36 |
((δ+2)z2+(δ+2), z6+(δ+2)) | 3 | 1 | 1 | | | 35 | 36 |
{(1,14), (3,9), (9,0)} | [ 5/2, 3/2 ] | (2z+1, z3+2) | 1 | 1 | 2 | | | 34 | 36 | 8·36 |
(2z+δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+1), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+2δ, z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(2δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
(2z+(δ+2), z3+2) | 1 | 1 | 2 | | | 34 | 36 |
15 | {(1,15), (3,6), (9,0)} | [ 9/2, 1 ] | (2z+1, z6+2) | {1,3} | 1 | 2 | | | 37 [!] | 38 | 8·38 | 8·38 |
(2δz+δ, z6+2δ) | 1 | 1 | 2 | | | 36 | 38 |
((2δ+2)z+(δ+1), z6+(2δ+2)) | {1,3} | 1 | 2 | | | 37 [!] | 38 |
((δ+2)z+(2δ+1), z6+(δ+2)) | 1 | 1 | 2 | | | 36 | 38 |
(z+2, z6+1) | {1,3} | 1 | 2 | | | 37 [!] | 38 |
(δz+2δ, z6+δ) | 1 | 1 | 2 | | | 36 | 38 |
((δ+1)z+(2δ+2), z6+(δ+1)) | {1,3} | 1 | 2 | | | 37 [!] | 38 |
((2δ+1)z+(δ+2), z6+(2δ+1)) | 1 | 1 | 2 | | | 36 | 38 |
16 | {(1,16), (3,9), (9,0)} | [ 7/2, 3/2 ] | (2z+1, z3+2) | 1 | 1 | 2 | | | 36 | 38 | 8·38 | 8·38 |
(2z+δ, z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+(δ+1), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+(2δ+1), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+2, z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+2δ, z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+(2δ+2), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z+(δ+2), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
17 | {(1,17), (3,9), (9,0)} | [ 4, 3/2 ] | (2z2+1, z3+2) | 3 | 1 | 2 | | | 37 | 38 | 8·38 | 8·38 |
(2z2+δ, z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z2+(δ+1), z3+2) | 3 | 1 | 2 | | | 37 | 38 |
(2z2+(2δ+1), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z2+2, z3+2) | 3 | 1 | 2 | | | 37 | 38 |
(2z2+2δ, z3+2) | 1 | 1 | 2 | | | 36 | 38 |
(2z2+(2δ+2), z3+2) | 3 | 1 | 2 | | | 37 | 38 |
(2z2+(δ+2), z3+2) | 1 | 1 | 2 | | | 36 | 38 |
18 | {(1,18), (3,9), (9,0)} | [ 9/2, 3/2 ] | (2z+1, z3+2) | 1 | 1 | 2 | | | 38 | 310 | 310 | 310 |