Polynomial Invariants |
#Aut |
Splitting Field |
Number of
|
j |
Ramification Polygon |
Slopes |
Residual Polynomials |
eT |
fT |
#Gal |
Gal |
Polynomials |
Extensions
|
1 | {(1,1), (9,0), (18,0)} | [ 1/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | 64·34 | 18T476 | 1 | 2·32 | 4·32 | 4·32 |
(2z+2, z9+2) | 1 | 4 | 16 | 64·34 | 18T476 | 1 | 2·32 |
2 | {(1,2), (9,0), (18,0)} | [ 1/4, 0 ] | (2z2+1, z9+2) | 1 | 2 | 8 | 16·32 | [144,182] = 18T73 | 1 | 2·32 | 4·32 | 4·32 |
(2z2+2, z9+2) | 1 | 2 | 8 | 16·32 | [144,182] = 18T73 | 1 | 2·32 |
4 | {(1,4), (3,3), (9,0), (18,0)} | [ 1/2, 0 ] | (2z4+z+1, z9+2) | 1 | 4 | 4 | 16·34 | [1296,3508] = 18T297 | 1 | 2·32 | 8·32 | 4·33 |
(2z4+2z+1, z9+2) | 1 | 4 | 4 | 16·34 | [1296,3508] = 18T297 | 1 | 2·32 |
(2z4+z+2, z9+2) | 1 | 4 | 4 | 16·34 | [1296,3508] = 18T297 | 1 | 2·32 |
(2z4+2z+2, z9+2) | 1 | 4 | 4 | 16·34 | [1296,3508] = 18T297 | 1 | 2·32 |
{(1,4), (9,0), (18,0)} | [ 1/2, 0 ] | (2z4+1, z9+2) | 1 | 2 | 4 | 8·32 | [72,40] = 18T34 | 1 | 2·32 | 4·32 |
(2z4+2, z9+2) | 1 | 2 | 4 | 8·32 | [72,40] = 18T34 | 1 | 2·32 |
5 | {(1,5), (3,3), (9,0), (18,0)} | [ 1, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 1 | 2·32 | 8·32 | 4·33 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 3 | 2·32 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 3 | 2·32 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 1 | 2·32 |
{(1,5), (9,0), (18,0)} | [ 5/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | 64·34 | 18T476 | 1 | 2·32 | 4·32 |
(2z+2, z9+2) | 1 | 4 | 16 | 64·34 | 18T476 | 1 | 2·32 |
7 | {(1,7), (3,3), (9,0), (18,0)} | [ 2, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 | 8·33 | 4·34 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 32 | 2·33 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 32 | 2·33 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
{(1,7), (3,6), (9,0), (18,0)} | [ 1/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | 1 | 4 | 16 | | | 1 | 2·32 | 8·32 |
(2z+1, 2z6+2, z9+2) | 1 | 4 | 16 | | | 1 | 2·32 |
(z+2, 2z6+1, z9+2) | 1 | 4 | 16 | | | 1 | 2·32 |
(2z+2, 2z6+2, z9+2) | 1 | 4 | 16 | | | 1 | 2·32 |
{(1,7), (9,0), (18,0)} | [ 7/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 | 4·33 |
(2z+2, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 |
8 | {(1,8), (3,3), (9,0), (18,0)} | [ 5/2, 1/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 | 8·33 | 4·34 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
{(1,8), (3,6), (9,0), (18,0)} | [ 1, 0 ] | (2z8+z2+1, z9+2) | 1 | 8 | 2 | 16·32 | [144,185] = 18T59 | 1 | 2·32 | 8·32 |
(2z8+2z2+1, z9+2) | 1 | 8 | 2 | 16·32 | [144,185] = 18T59 | 1 | 2·32 |
(2z8+z2+2, z9+2) | 1 | 8 | 2 | 16·32 | [144,185] = 18T59 | 1 | 2·32 |
(2z8+2z2+2, z9+2) | 3 | 8 | 2 | | | 3 | 2·32 |
{(1,8), (9,0), (18,0)} | [ 1, 0 ] | (2z8+1, z9+2) | 3 | 2 | 2 | | | 3 | 2·32 | 4·32 |
(2z8+2, z9+2) | 1 | 2 | 2 | 4·32 | [36,10] = 18T11 | 1 | 2·32 |
10 | {(1,10), (3,3), (9,0), (18,0)} | [ 7/2, 1/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 | 8·34 | 4·35 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
{(1,10), (3,6), (9,0), (18,0)} | [ 2, 1, 0 ] | (z2+1, 2z6+1, z9+2) | 3 | 2 | 2 | | | 32 | 2·33 | 8·33 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 32 | 2·33 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 33 [!] | 2·33 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 3 | 2·33 |
{(1,10), (9,0), (18,0)} | [ 5/4, 0 ] | (2z2+1, z9+2) | 1 | 2 | 8 | | | 3 | 2·33 | 4·33 |
(2z2+2, z9+2) | 1 | 2 | 8 | | | 3 | 2·33 |
11 | {(1,11), (3,3), (9,0), (18,0)} | [ 4, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 | 8·34 | 4·35 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 33 | 2·34 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 33 | 2·34 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
{(1,11), (3,6), (9,0), (18,0)} | [ 5/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | 3 | 2 | 4 | | | 32 | 2·33 | 8·33 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
(z+2, 2z6+1, z9+2) | 3 | 2 | 4 | | | 32 | 2·33 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 3 | 2·33 |
{(1,11), (9,0), (18,0)} | [ 11/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 | 4·33 |
(2z+2, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 |
13 | {(1,13), (3,3), (9,0), (18,0)} | [ 5, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 | 8·35 | 4·36 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,13), (3,6), (9,0), (18,0)} | [ 7/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | 3 | 2 | 4 | | | 33 | 2·34 | 8·34 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
(z+2, 2z6+1, z9+2) | 3 | 2 | 4 | | | 33 | 2·34 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
{(1,13), (9,0), (18,0)} | [ 13/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 | 4·34 |
(2z+2, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 |
14 | {(1,14), (3,3), (9,0), (18,0)} | [ 11/2, 1/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 | 8·35 | 4·36 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,14), (3,6), (9,0), (18,0)} | [ 4, 1, 0 ] | (z2+1, 2z6+1, z9+2) | 3 | 2 | 2 | | | 33 | 2·34 | 8·34 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 33 | 2·34 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 34 [!] | 2·34 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 32 | 2·34 |
{(1,14), (3,12), (9,0), (18,0)} | [ 1, 2, 0 ] | (z2+1, 2z6+1, z9+2) | 1 | 2 | 8 | | | 3 | 2·33 | 8·33 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 8 | | | 32 | 2·33 |
(z2+2, 2z6+1, z9+2) | 3 | 2 | 8 | | | 32 | 2·33 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 8 | | | 3 | 2·33 |
{(1,14), (9,0), (18,0)} | [ 7/4, 0 ] | (2z2+1, z9+2) | 1 | 2 | 8 | | | 32 | 2·34 | 4·34 |
(2z2+2, z9+2) | 1 | 2 | 8 | | | 32 | 2·34 |
16 | {(1,16), (3,3), (9,0), (18,0)} | [ 13/2, 1/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 | 8·36 | 4·37 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,16), (3,6), (9,0), (18,0)} | [ 5, 1, 0 ] | (z2+1, 2z6+1, z9+2) | 3 | 2 | 2 | | | 34 | 2·35 | 8·35 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 34 | 2·35 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 35 [!] | 2·35 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 33 | 2·35 |
{(1,16), (3,12), (9,0), (18,0)} | [ 2, 0 ] | (2z8+z2+1, z9+2) | 1 | 8 | 2 | | | 32 | 2·34 | 8·34 |
(2z8+2z2+1, z9+2) | 1 | 8 | 2 | | | 32 | 2·34 |
(2z8+z2+2, z9+2) | 1 | 8 | 2 | | | 32 | 2·34 |
(2z8+2z2+2, z9+2) | 3 | 8 | 2 | | | 33 | 2·34 |
{(1,16), (9,0), (18,0)} | [ 2, 0 ] | (2z8+1, z9+2) | 3 | 2 | 2 | | | 33 | 2·34 | 4·34 |
(2z8+2, z9+2) | 1 | 2 | 2 | | | 32 | 2·34 |
17 | {(1,17), (3,3), (9,0), (18,0)} | [ 7, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 | 8·36 | 4·37 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,17), (3,6), (9,0), (18,0)} | [ 11/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 | 8·35 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(z+2, 2z6+1, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,17), (3,12), (9,0), (18,0)} | [ 5/2, 2, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 33 [!] | 2·34 | 8·34 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 33 [!] | 2·34 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 32 | 2·34 |
{(1,17), (3,15), (9,0), (18,0)} | [ 1, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 | 8·33 |
(2z2+1, 2z3+2, z9+2) | 3 | 4 | 16 | | | 32 | 2·33 |
(z2+2, 2z3+1, z9+2) | 3 | 4 | 16 | | | 32 | 2·33 |
(2z2+2, 2z3+2, z9+2) | 1 | 4 | 16 | | | 3 | 2·33 |
{(1,17), (9,0), (18,0)} | [ 17/8, 0 ] | (2z+1, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 | 4·34 |
(2z+2, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 |
19 | {(1,19), (3,3), (9,0), (18,0)} | [ 8, 1/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 | 8·37 | 4·38 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 36 | 2·37 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 36 | 2·37 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,19), (3,6), (9,0), (18,0)} | [ 13/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 | 8·36 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(z+2, 2z6+1, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,19), (3,12), (9,0), (18,0)} | [ 7/2, 2, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 34 [!] | 2·35 | 8·35 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 34 [!] | 2·35 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,19), (3,15), (9,0), (18,0)} | [ 2, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 | 8·34 |
(2z2+1, 2z3+2, z9+2) | 3 | 4 | 16 | | | 33 | 2·34 |
(z2+2, 2z3+1, z9+2) | 3 | 4 | 16 | | | 33 | 2·34 |
(2z2+2, 2z3+2, z9+2) | 1 | 4 | 16 | | | 32 | 2·34 |
20 | {(1,20), (3,3), (9,0), (18,0)} | [ 17/2, 1/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 | 8·37 | 4·38 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,20), (3,6), (9,0), (18,0)} | [ 7, 1, 0 ] | (z2+1, 2z6+1, z9+2) | 3 | 2 | 2 | | | 35 | 2·36 | 8·36 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 35 | 2·36 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 36 [!] | 2·36 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 34 | 2·36 |
{(1,20), (3,12), (9,0), (18,0)} | [ 4, 2, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 34 [!] | 2·35 | 8·35 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 34 | 2·35 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 35 [!] | 2·35 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 33 | 2·35 |
{(1,20), (3,15), (9,0), (18,0)} | [ 5/2, 0 ] | (2z4+z+1, z9+2) | 1 | 4 | 4 | | | 32 | 2·34 | 8·34 |
(2z4+2z+1, z9+2) | 1 | 4 | 4 | | | 32 | 2·34 |
(2z4+z+2, z9+2) | 1 | 4 | 4 | | | 32 | 2·34 |
(2z4+2z+2, z9+2) | 1 | 4 | 4 | | | 32 | 2·34 |
21 | {(1,21), (3,3), (9,0), (18,0)} | [ 9, 1/2, 0 ] | (2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 37 | 2·38 | 4·38 | 4·38 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 37 | 2·38 |
22 | {(1,22), (3,6), (9,0), (18,0)} | [ 8, 1, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 36 [!] | 2·37 | 8·37 | 4·38 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 36 | 2·37 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 37 [!] | 2·37 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 35 | 2·37 |
{(1,22), (3,12), (9,0), (18,0)} | [ 5, 2, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 35 [!] | 2·36 | 8·36 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 35 | 2·36 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 36 [!] | 2·36 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 34 | 2·36 |
{(1,22), (3,15), (9,0), (18,0)} | [ 7/2, 5/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 | 8·35 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,22), (3,18), (9,0), (18,0)} | [ 2, 3, 0 ] | (z2+1, 2z6+1, z9+2) | 1 | 2 | 8 | | | 33 | 2·35 | 4·35 |
(z2+2, 2z6+1, z9+2) | 3 | 2 | 8 | | | 34 | 2·35 |
23 | {(1,23), (3,6), (9,0), (18,0)} | [ 17/2, 1, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 | 8·37 | 4·38 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,23), (3,12), (9,0), (18,0)} | [ 11/2, 2, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 35 [!] | 2·36 | 8·36 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 35 [!] | 2·36 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,23), (3,15), (9,0), (18,0)} | [ 4, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 | 8·35 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 34 | 2·35 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 33 | 2·35 |
{(1,23), (3,18), (9,0), (18,0)} | [ 5/2, 3, 0 ] | (z+1, 2z6+1, z9+2) | 1 | 4 | 16 | | | 33 | 2·35 | 4·35 |
(z+2, 2z6+1, z9+2) | 1 | 4 | 16 | | | 33 | 2·35 |
24 | {(1,24), (3,6), (9,0), (18,0)} | [ 9, 1, 0 ] | (2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 37 | 2·38 | 4·38 | 4·38 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 38 [!] | 2·38 |
25 | {(1,25), (3,12), (9,0), (18,0)} | [ 13/2, 2, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 | 8·37 | 4·38 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,25), (3,15), (9,0), (18,0)} | [ 5, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 | 8·36 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 35 | 2·36 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,25), (3,18), (9,0), (18,0)} | [ 7/2, 3, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 35 [!] | 2·36 | 4·36 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 35 [!] | 2·36 |
26 | {(1,26), (3,12), (9,0), (18,0)} | [ 7, 2, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 36 [!] | 2·37 | 8·37 | 4·38 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 36 | 2·37 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 37 [!] | 2·37 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 35 | 2·37 |
{(1,26), (3,15), (9,0), (18,0)} | [ 11/2, 5/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 | 8·36 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 34 | 2·36 |
{(1,26), (3,18), (9,0), (18,0)} | [ 4, 3, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 35 [!] | 2·36 | 4·36 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 36 [!] | 2·36 |
28 | {(1,28), (3,12), (9,0), (18,0)} | [ 8, 2, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 37 [!] | 2·38 | 8·38 | 4·39 |
(2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 37 | 2·38 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 38 [!] | 2·38 |
(2z2+2, 2z6+2, z9+2) | 1 | 2 | 2 | | | 36 | 2·38 |
{(1,28), (3,15), (9,0), (18,0)} | [ 13/2, 5/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 | 8·37 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,28), (3,18), (9,0), (18,0)} | [ 5, 3, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 36 [!] | 2·37 | 4·37 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 37 [!] | 2·37 |
29 | {(1,29), (3,12), (9,0), (18,0)} | [ 17/2, 2, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 37 [!] | 2·38 | 8·38 | 4·39 |
(2z+1, 2z6+2, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 37 [!] | 2·38 |
(2z+2, 2z6+2, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
{(1,29), (3,15), (9,0), (18,0)} | [ 7, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 | 8·37 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 36 | 2·37 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 36 | 2·37 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 35 | 2·37 |
{(1,29), (3,18), (9,0), (18,0)} | [ 11/2, 3, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 | 4·37 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 36 [!] | 2·37 |
30 | {(1,30), (3,12), (9,0), (18,0)} | [ 9, 2, 0 ] | (2z2+1, 2z6+2, z9+2) | 3 | 2 | 2 | | | 38 | 2·39 | 4·39 | 4·39 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 39 [!] | 2·39 |
31 | {(1,31), (3,15), (9,0), (18,0)} | [ 8, 5/2, 0 ] | (z2+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 | 8·38 | 4·39 |
(2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 37 | 2·38 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 37 | 2·38 |
(2z2+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
{(1,31), (3,18), (9,0), (18,0)} | [ 13/2, 3, 0 ] | (z+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 37 [!] | 2·38 | 4·38 |
(z+2, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 4 | | | 37 [!] | 2·38 |
32 | {(1,32), (3,15), (9,0), (18,0)} | [ 17/2, 5/2, 0 ] | (z+1, 2z3+1, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 | 8·38 | 4·39 |
(2z+1, 2z3+2, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
(z+2, 2z3+1, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
(2z+2, 2z3+2, z9+2) | 1 | 2 | 4 | | | 36 | 2·38 |
{(1,32), (3,18), (9,0), (18,0)} | [ 7, 3, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 37 [!] | 2·38 | 4·38 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 38 [!] | 2·38 |
33 | {(1,33), (3,15), (9,0), (18,0)} | [ 9, 5/2, 0 ] | (2z2+1, 2z3+2, z9+2) | 3 | 2 | 4 | | | 38 | 2·39 | 4·39 | 4·39 |
(z2+2, 2z3+1, z9+2) | 3 | 2 | 4 | | | 38 | 2·39 |
34 | {(1,34), (3,18), (9,0), (18,0)} | [ 8, 3, 0 ] | (z2+1, 2z6+1, z9+2) | {1,2,3,6,9} | 2 | 2 | | | 38 [!] | 2·39 | 4·39 | 4·39 |
(z2+2, 2z6+1, z9+2) | {3,6,9,18} | 2 | 2 | | | 39 [!] | 2·39 |
35 | {(1,35), (3,18), (9,0), (18,0)} | [ 17/2, 3, 0 ] | (z+1, 2z6+1, z9+2) | 3 | 2 | 4 | | | 38 | 2·39 | 4·39 | 4·39 |
(z+2, 2z6+1, z9+2) | 3 | 2 | 4 | | | 38 | 2·39 |
36 | {(1,36), (3,18), (9,0), (18,0)} | [ 9, 3, 0 ] | (z2+2, 2z6+1, z9+2) | {3,6,9,18} | 1 | 2 | | | 310 [!] | 2·310 | 2·310 | 2·310 |