Number Theory Tables, Department of Mathematics and Statistics, UNCG

Number of totally ramified extensions of Q3 of degree 9

Introduction

Polynomial Invariants #Aut Splitting Field Number of
j Ramification Polygon Slopes Residual Polynomials fT eT #Gal Gal Polynomials Extensions
1{(1,1), (9,0)}[ 1/8 ](z+1){1}28{ 144 }{ 9T19 }1322·322·32
(z+2){1}28{ 144 }{ 9T19 }132
2{(1,2), (9,0)}[ 1/4 ](z2+1){1}24{ 72 }{ 9T14 }1322·322·32
(z2+2){1}24{ 72 }{ 9T16 }132
4{(1,4), (3,3), (9,0)}[ 1/2 ](z4+z+1){1}32{ 54 }{ 9T11 }1324·322·33
(z4+2z+1){1}32{ 54 }{ 9T11 }132
(z4+z+2){1}42{ 72 }{ 9T15 }132
(z4+2z+2){1}42{ 72 }{ 9T15 }132
{(1,4), (9,0)}[ 1/2 ](z4+1){1}22{ 36 }{ 9T9 }1322·32
(z4+2){1}22{ 36 }{ 9T8 }132
5{(1,5), (3,3), (9,0)}[ 1, 1/2 ](z2+1, z3+1){1}22{ 108 }{ 9T18 }1324·322·33
(2z2+1, z3+2){3}12{ 162 }{ 9T20 }332
(z2+2, z3+1){3}12{ 162 }{ 9T20 }332
(2z2+2, z3+2){1}22{ 108 }{ 9T18 }132
{(1,5), (9,0)}[ 5/8 ](z+1){1}28{ 144 }{ 9T19 }1322·32
(z+2){1}28{ 144 }{ 9T19 }132
7{(1,7), (3,3), (9,0)}[ 2, 1/2 ](z2+1, z3+1){1}22{ 36, 108 }{ 9T8, 9T18 }3334·332·34
(2z2+1, z3+2){3}12{ 18, 162 }{ 9T4, 9T20 }3233
(z2+2, z3+1){3}12{ 18, 162 }{ 9T4, 9T20 }3233
(2z2+2, z3+2){1}22{ 36, 108 }{ 9T8, 9T18 }333
{(1,7), (9,0)}[ 7/8 ](z+1){1}28{ 144 }{ 9T19 }3332·33
(z+2){1}28{ 144 }{ 9T19 }333
8{(1,8), (3,3), (9,0)}[ 5/2, 1/2 ](z+1, z3+1){1}12{ 54 }{ 9T10 }3334·332·34
(2z+1, z3+2){1}12{ 54 }{ 9T10 }333
(z+2, z3+1){1}22{ 324 }{ 9T24 }333
(2z+2, z3+2){1}22{ 324 }{ 9T24 }333
{(1,8), (3,6), (9,0)}[ 1 ](z8+z2+1){3}31{ 27 }{ 9T7 }3324·32
(z8+2z2+1){1}61{ 54 }{ 9T11 }132
(z8+z2+2){1}81{ 72 }{ 9T15 }132
(z8+2z2+2){1}81{ 72 }{ 9T15 }132
{(1,8), (9,0)}[ 1 ](z8+1){1}41{ 36 }{ 9T9 }1322·32
(z8+2){3}21{ 18 }{ 9T4 }332
10{(1,10), (3,3), (9,0)}[ 7/2, 1/2 ](z+1, z3+1){1}12{ 18, 54 }{ 9T11, 9T10, 9T3 }32344·342·35
(2z+1, z3+2){1}12{ 18, 54 }{ 9T5, 9T11, 9T10 }3234
(z+2, z3+1){1}22{ 36, 324 }{ 9T8, 9T24 }3234
(2z+2, z3+2){1}22{ 108, 324 }{ 9T18, 9T24 }3234
{(1,10), (3,6), (9,0)}[ 2, 1 ](z2+1, z6+1){1}21{ 54 }{ 9T11 }3334·33
(2z2+1, z6+2){3}11{ 81 }{ 9T17 }33 [32]33
(z2+2, z6+1){3}21{ 162 }{ 9T20 }3233
(2z2+2, z6+2){1}21{ 54 }{ 9T13 }32 [3]33
11{(1,11), (3,3), (9,0)}[ 4, 1/2 ](z2+1, z3+1){1}22{ 108 }{ 9T18 }32344·342·35
(2z2+1, z3+2){3}12{ 54, 162 }{ 9T12, 9T20 }3334
(z2+2, z3+1){3}12{ 162 }{ 9T20 }3334
(2z2+2, z3+2){1}22{ 324 }{ 9T24 }3234
{(1,11), (3,6), (9,0)}[ 5/2, 1 ](z+1, z6+1){1}22{ 108 }{ 9T18 }3334·33
(2z+1, z6+2){3}12{ 18 }{ 9T4 }32 [32]33
(z+2, z6+1){1}22{ 36 }{ 9T8 }333
(2z+2, z6+2){1}12{ 54 }{ 9T13 }32 [3]33
12{(1,12), (3,3), (9,0)}[ 9/2, 1/2 ](2z+1, z3+2){1}12{ 162 }{ 9T21 }33352·352·35
(z+2, z3+1){1}22{ 324 }{ 9T24 }3335
13{(1,13), (3,6), (9,0)}[ 7/2, 1 ](z+1, z6+1){1}22{ 108 }{ 9T18 }32344·342·35
(2z+1, z6+2){1}12{ 54 }{ 9T13 }33 [32]34
(z+2, z6+1){1}22{ 324 }{ 9T24 }3234
(2z+2, z6+2){1}12{ 162 }{ 9T22 }33 [32]34
{(1,13), (3,9), (9,0)}[ 2, 3/2 ](2z2+1, z3+2){3}12{ 54 }{ 9T12 }33342·34
(2z2+2, z3+2){1}22{ 108 }{ 9T18 }3234
14{(1,14), (3,6), (9,0)}[ 4, 1 ](z2+1, z6+1){1}21{ 18, 54 }{ 9T10, 9T3 }32344·342·35
(2z2+1, z6+2){3,9}11{ 9, 27, 81 }{ 9T1, 9T17, 9T6 }34 [11·3]34
(z2+2, z6+1){3}21{ 162 }{ 9T20 }33 [.]34
(2z2+2, z6+2){1}21{ 162 }{ 9T22 }33 [32]34
{(1,14), (3,9), (9,0)}[ 5/2, 3/2 ](2z+1, z3+2){1}12{ 54 }{ 9T11 }32342·34
(2z+2, z3+2){1}22{ 108 }{ 9T18 }3234
15{(1,15), (3,6), (9,0)}[ 9/2, 1 ](2z+1, z6+2){1}12{ 162 }{ 9T22 }34 [33]352·352·35
(z+2, z6+1){1}22{ 324 }{ 9T24 }3335
16{(1,16), (3,9), (9,0)}[ 7/2, 3/2 ](2z+1, z3+2){1}12{ 162 }{ 9T21 }33352·352·35
(2z+2, z3+2){1}22{ 324 }{ 9T24 }3335
17{(1,17), (3,9), (9,0)}[ 4, 3/2 ](2z2+1, z3+2){3}12{ 162 }{ 9T20 }34352·352·35
(2z2+2, z3+2){1}22{ 324 }{ 9T24 }3335
18{(1,18), (3,9), (9,0)}[ 9/2, 3/2 ](2z+1, z3+2){1}12{ 18, 54, 162 }{ 9T10, 9T21, 9T3 }34363636