Number Theory Tables, Department of Mathematics and Statistics, UNCG

Number of totally ramified extensions of Q13 of degree 26

Introduction

Polynomial Invariants #Aut Splitting Field Number of
j Ramification Polygon Slopes Residual Polynomials fT eT #Gal Gal Polynomials Extensions
1{(1,1), (13,0), (26,0)}[ 1/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }12·1324·1324·13
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }12·13
2{(1,2), (13,0), (26,0)}[ 1/6, 0 ](2z2+1, z13+2){2}212{ 312 }{ 26T10 }12·1324·1324·13
(2z2+2, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+3, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+4, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+5, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+6, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+7, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+8, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+9, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+10, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+11, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+12, z13+2){2}212{ 312 }{ 26T10 }12·13
3{(1,3), (13,0), (26,0)}[ 1/4, 0 ](2z3+1, z13+2){1}68{ 8112 }{ 26T45 }12·1324·1324·13
(2z3+2, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+3, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+4, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+5, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+6, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+7, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+8, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+9, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+10, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+11, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+12, z13+2){1}68{ 8112 }{ 26T45 }12·13
4{(1,4), (13,0), (26,0)}[ 1/3, 0 ](2z4+1, z13+2){2}46{ 312 }{ 26T10 }12·1324·1324·13
(2z4+2, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+3, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+4, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+5, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+6, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+7, z13+2){2}16{ 78 }{ 26T6 }12·13
(2z4+8, z13+2){2}16{ 78 }{ 26T6 }12·13
(2z4+9, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+10, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+11, z13+2){2}16{ 78 }{ 26T6 }12·13
(2z4+12, z13+2){2}46{ 312 }{ 26T10 }12·13
5{(1,5), (13,0), (26,0)}[ 5/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }12·1324·1324·13
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }12·13
6{(1,6), (13,0), (26,0)}[ 1/2, 0 ](2z6+1, z13+2){2}64{ 312 }{ 26T10 }12·1324·1324·13
(2z6+2, z13+2){2}14{ 52 }{ 26T4 }12·13
(2z6+3, z13+2){2}24{ 104 }{ 26T7 }12·13
(2z6+4, z13+2){2}64{ 312 }{ 26T10 }12·13
(2z6+5, z13+2){2}34{ 156 }{ 26T8 }12·13
(2z6+6, z13+2){2}34{ 156 }{ 26T8 }12·13
(2z6+7, z13+2){2}34{ 156 }{ 26T8 }12·13
(2z6+8, z13+2){2}34{ 156 }{ 26T8 }12·13
(2z6+9, z13+2){2}64{ 312 }{ 26T10 }12·13
(2z6+10, z13+2){2}24{ 104 }{ 26T7 }12·13
(2z6+11, z13+2){2}14{ 52 }{ 26T4 }12·13
(2z6+12, z13+2){2}64{ 312 }{ 26T10 }12·13
7{(1,7), (13,0), (26,0)}[ 7/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }12·1324·1324·13
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }12·13
8{(1,8), (13,0), (26,0)}[ 2/3, 0 ](2z4+1, z13+2){2}46{ 312 }{ 26T10 }12·1324·1324·13
(2z4+2, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+3, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+4, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+5, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+6, z13+2){2}26{ 156 }{ 26T9 }12·13
(2z4+7, z13+2){2}16{ 78 }{ 26T5 }12·13
(2z4+8, z13+2){2}16{ 78 }{ 26T5 }12·13
(2z4+9, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+10, z13+2){2}46{ 312 }{ 26T10 }12·13
(2z4+11, z13+2){2}16{ 78 }{ 26T5 }12·13
(2z4+12, z13+2){2}46{ 312 }{ 26T10 }12·13
9{(1,9), (13,0), (26,0)}[ 3/4, 0 ](2z3+1, z13+2){1}68{ 8112 }{ 26T45 }12·1324·1324·13
(2z3+2, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+3, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+4, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+5, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+6, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+7, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+8, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+9, z13+2){1}68{ 8112 }{ 26T45 }12·13
(2z3+10, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+11, z13+2){1}28{ 2704 }{ 26T26 }12·13
(2z3+12, z13+2){1}68{ 8112 }{ 26T45 }12·13
10{(1,10), (13,0), (26,0)}[ 5/6, 0 ](2z2+1, z13+2){2}212{ 312 }{ 26T10 }12·1324·1324·13
(2z2+2, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+3, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+4, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+5, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+6, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+7, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+8, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+9, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+10, z13+2){2}212{ 312 }{ 26T10 }12·13
(2z2+11, z13+2){2}112{ 156 }{ 26T8 }12·13
(2z2+12, z13+2){2}212{ 312 }{ 26T10 }12·13
11{(1,11), (13,0), (26,0)}[ 11/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }12·1324·1324·13
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }12·13
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }12·13
12{(1,12), (13,0), (26,0)}[ 1, 0 ](2z12+1, z13+2){2}122{ 312 }{ 26T10 }12·1324·1324·13
(2z12+2, z13+2){2}22{ 52 }{ 26T3 }12·13
(2z12+3, z13+2){2}42{ 104 }{ 26T7 }12·13
(2z12+4, z13+2){2}122{ 312 }{ 26T10 }12·13
(2z12+5, z13+2){2}62{ 156 }{ 26T9 }12·13
(2z12+6, z13+2){2}62{ 156 }{ 26T9 }12·13
(2z12+7, z13+2){2}32{ 78 }{ 26T6 }12·13
(2z12+8, z13+2){2}32{ 78 }{ 26T6 }12·13
(2z12+9, z13+2){2}122{ 312 }{ 26T10 }12·13
(2z12+10, z13+2){2}42{ 104 }{ 26T7 }12·13
(2z12+11, z13+2){13,26}12{ 26, 338 }{ 26T11, 26T2 }132·13
(2z12+12, z13+2){2}122{ 312 }{ 26T10 }12·13
14{(1,14), (13,0), (26,0)}[ 7/6, 0 ](2z2+1, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·13224·13224·132
(2z2+2, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+3, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+4, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+5, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+6, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+7, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+8, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+9, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+10, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+11, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+12, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
15{(1,15), (13,0), (26,0)}[ 5/4, 0 ](2z3+1, z13+2){1}68{ 8112 }{ 26T45 }132·13224·13224·132
(2z3+2, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+3, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+4, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+5, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+6, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+7, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+8, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+9, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+10, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+11, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+12, z13+2){1}68{ 8112 }{ 26T45 }132·132
16{(1,16), (13,0), (26,0)}[ 4/3, 0 ](2z4+1, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·13224·13224·132
(2z4+2, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+3, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+4, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+5, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+6, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+7, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T5 }132·132
(2z4+8, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T5 }132·132
(2z4+9, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+10, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+11, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T5 }132·132
(2z4+12, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
17{(1,17), (13,0), (26,0)}[ 17/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }132·13224·13224·132
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }132·132
18{(1,18), (13,0), (26,0)}[ 3/2, 0 ](2z6+1, z13+2){1,2}64{ 312, 4056 }{ 26T33, 26T10 }132·13224·13224·132
(2z6+2, z13+2){1,2}14{ 52, 676 }{ 26T4, 26T12 }132·132
(2z6+3, z13+2){1,2}24{ 104, 1352 }{ 26T7, 26T18 }132·132
(2z6+4, z13+2){1,2}64{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z6+5, z13+2){1,2}34{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z6+6, z13+2){1,2}34{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z6+7, z13+2){1,2}34{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z6+8, z13+2){1,2}34{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z6+9, z13+2){1,2}64{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z6+10, z13+2){1,2}24{ 104, 1352 }{ 26T7, 26T18 }132·132
(2z6+11, z13+2){1,2}14{ 52, 676 }{ 26T4, 26T12 }132·132
(2z6+12, z13+2){1,2}64{ 312, 4056 }{ 26T33, 26T10 }132·132
19{(1,19), (13,0), (26,0)}[ 19/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }132·13224·13224·132
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }132·132
20{(1,20), (13,0), (26,0)}[ 5/3, 0 ](2z4+1, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·13224·13224·132
(2z4+2, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+3, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+4, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+5, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+6, z13+2){1,2}26{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z4+7, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T6 }132·132
(2z4+8, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T6 }132·132
(2z4+9, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+10, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z4+11, z13+2){1,2}16{ 78, 1014 }{ 26T15, 26T6 }132·132
(2z4+12, z13+2){1,2}46{ 312, 4056 }{ 26T33, 26T10 }132·132
21{(1,21), (13,0), (26,0)}[ 7/4, 0 ](2z3+1, z13+2){1}68{ 8112 }{ 26T45 }132·13224·13224·132
(2z3+2, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+3, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+4, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+5, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+6, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+7, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+8, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+9, z13+2){1}68{ 8112 }{ 26T45 }132·132
(2z3+10, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+11, z13+2){1}28{ 2704 }{ 26T26 }132·132
(2z3+12, z13+2){1}68{ 8112 }{ 26T45 }132·132
22{(1,22), (13,0), (26,0)}[ 11/6, 0 ](2z2+1, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·13224·13224·132
(2z2+2, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+3, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+4, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+5, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+6, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+7, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+8, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+9, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+10, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
(2z2+11, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }132·132
(2z2+12, z13+2){1,2}212{ 312, 4056 }{ 26T33, 26T10 }132·132
23{(1,23), (13,0), (26,0)}[ 23/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }132·13224·13224·132
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }132·132
24{(1,24), (13,0), (26,0)}[ 2, 0 ](2z12+1, z13+2){1,2}122{ 312, ...}{ ..., 26T10 }132·13224·13224·132
(2z12+2, z13+2){1,2}22{ 52, 676 }{ 26T3, 26T13 }132·132
(2z12+3, z13+2){1,2}42{ 104, 1352 }{ 26T7, 26T18 }132·132
(2z12+4, z13+2){1,2}122{ 312, ...}{ ..., 26T10 }132·132
(2z12+5, z13+2){1,2}62{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z12+6, z13+2){1,2}62{ 156, 2028 }{ 26T22, 26T9 }132·132
(2z12+7, z13+2){1,2}32{ 78, 1014 }{ 26T15, 26T5 }132·132
(2z12+8, z13+2){1,2}32{ 78, 1014 }{ 26T15, 26T5 }132·132
(2z12+9, z13+2){1,2}122{ 312, ...}{ ..., 26T10 }132·132
(2z12+10, z13+2){1,2}42{ 104, 1352 }{ 26T7, 26T18 }132·132
(2z12+11, z13+2){13,26}12{ 26, 338 }{ 26T11, 26T1 }1322·132
(2z12+12, z13+2){1,2}122{ 312, ...}{ ..., 26T10 }132·132
25{(1,25), (13,0), (26,0)}[ 25/12, 0 ](2z+1, z13+2){1}224{ 8112 }{ 26T45 }132·13224·13224·132
(2z+2, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+3, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+4, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+5, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+6, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+7, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+8, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+9, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+10, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+11, z13+2){1}224{ 8112 }{ 26T45 }132·132
(2z+12, z13+2){1}224{ 8112 }{ 26T45 }132·132
26{(1,26), (13,0), (26,0)}[ 13/6, 0 ](2z2+11, z13+2){1,2}112{ 156, 2028 }{ 26T21, 26T8 }1322·1332·1332·133