Number Theory Tables, Department of Mathematics and Statistics, UNCG

Number of totally ramified extensions of Q3 of degree 6

Introduction

Polynomial Invariants #Aut Splitting Field Number of
j Ramification Polygon Slopes Residual Polynomials fT eT #Gal Gal Polynomials Extensions
1{(1,1), (3,0), (6,0)}[ 1/2, 0 ](2z+1, z3+2){1}24{ 72 }{ 6T13 }12·34·34·3
(2z+2, z3+2){1}24{ 72 }{ 6T13 }12·3
2{(1,2), (3,0), (6,0)}[ 1, 0 ](2z2+1, z3+2){3,6}12{ 6, 18 }{ 6T5, 6T2 }32·34·34·3
(2z2+2, z3+2){2}22{ 12 }{ 6T3 }12·3
4{(1,4), (3,0), (6,0)}[ 2, 0 ](2z2+1, z3+2){3,6}12{ 6, 18 }{ 6T5, 6T1 }322·324·324·32
(2z2+2, z3+2){1,2}22{ 12, 36 }{ 6T3, 6T9 }32·32
5{(1,5), (3,0), (6,0)}[ 5/2, 0 ](2z+1, z3+2){1}24{ 72 }{ 6T13 }32·324·324·32
(2z+2, z3+2){1}24{ 72 }{ 6T13 }32·32
6{(1,6), (3,0), (6,0)}[ 3, 0 ](2z2+1, z3+2){3,6}12{ 6, 18 }{ 6T5, 6T2 }332·332·332·33