Number Theory Tables, Department of Mathematics and Statistics, UNCG

Number of totally ramified extensions of Q(δ)≅Q3[x]/(x2+2 + O(3^30)x+2 + O(3^30)) of degree 3

Introduction

Polynomial Invariants #Aut Splitting Field Number of
j Ramification Polygon Slopes Residual Polynomials fT eT #Gal Gal Polynomials Extensions
1{(1,1), (3,0)}[ 1/2 ](z+1){1}12{ 6 }{ 3T2 }138·38·3
(z+δ){1}12{ 6 }{ 3T2 }13
(z+(δ+1)){1}12{ 6 }{ 3T2 }13
(z+(2δ+1)){1}12{ 6 }{ 3T2 }13
(z+2){1}12{ 6 }{ 3T2 }13
(z+2δ){1}12{ 6 }{ 3T2 }13
(z+(2δ+2)){1}12{ 6 }{ 3T2 }13
(z+(δ+2)){1}12{ 6 }{ 3T2 }13
2{(1,2), (3,0)}[ 1 ](z2+1){3}11{ 3 }{ 3T1 }338·38·3
(z2+δ){1}21{ 6 }{ 3T2 }13
(z2+(δ+1)){3}11{ 3 }{ 3T1 }33
(z2+(2δ+1)){1}21{ 6 }{ 3T2 }13
(z2+2){3}11{ 3 }{ 3T1 }33
(z2+2δ){1}21{ 6 }{ 3T2 }13
(z2+(2δ+2)){3}11{ 3 }{ 3T1 }33
(z2+(δ+2)){1}21{ 6 }{ 3T2 }13
3{(1,3), (3,0)}[ 3/2 ](z+2){1}12{ 6 }{ 3T2 }32333333