Polynomial Invariants |
#Aut |
Splitting Field |
Number of
|
j |
Ramification Polygon |
Slopes |
Residual Polynomials |
fT |
eT |
#Gal |
Gal |
Polynomials |
Extensions
|
1 | {(1,1), (8,0)} | [ 1/7 ] | (z+1) | {1} | 3 | 7 | { 168 } | { 8T36 } | 1 | 23 | 23 | 23 |
3 | {(1,3), (2,2), (8,0)} | [ 1, 1/3 ] | (z+1, z2+1) | {2} | 2 | 3 | { 48 } | { 8T23 } | 2 | 23 | 23 | 24 |
{(1,3), (8,0)} | [ 3/7 ] | (z+1) | {1} | 3 | 7 | { 168 } | { 8T36 } | 1 | 23 | 23 |
5 | {(1,5), (2,2), (8,0)} | [ 3, 1/3 ] | (z+1, z2+1) | {2} | 2 | 3 | { 48 } | { 8T24, 8T23 } | 22 | 24 | 24 | 25 |
{(1,5), (8,0)} | [ 5/7 ] | (z+1) | {1} | 3 | 7 | { 168 } | { 8T36 } | 2 | 24 | 24 |
7 | {(1,7), (2,2), (8,0)} | [ 5, 1/3 ] | (z+1, z2+1) | {2} | 2 | 3 | | | 23 | 25 | 25 | 26 |
{(1,7), (2,6), (4,4), (8,0)} | [ 1 ] | (z7+z3+z+1) | {2} | 4 | 1 | { 32 } | { 8T19 } | 2 | 23 | 23 |
{(1,7), (4,4), (8,0)} | [ 1 ] | (z7+z3+1) | {1} | 7 | 1 | { 56 } | { 8T25 } | 1 | 23 | 23 |
{(1,7), (2,6), (8,0)} | [ 1 ] | (z7+z+1) | {1} | 7 | 1 | { 56 } | { 8T25 } | 1 | 23 | 23 |
{(1,7), (8,0)} | [ 1 ] | (z7+1) | {2} | 3 | 1 | { 24 } | { 8T13 } | 2 | 23 | 23 |
9 | {(1,9), (2,2), (8,0)} | [ 7, 1/3 ] | (z+1, z2+1) | {2} | 2 | 3 | { 48, ...} | { ..., 8T24, 8T23 } | 24 [.] | 26 | 26 | 27 |
{(1,9), (2,6), (4,4), (8,0)} | [ 3, 1 ] | (z+1, z6+z2+1) | {2} | 3 | 1 | { 192 } | { 8T38 } | 22 | 24 | 24 |
{(1,9), (4,4), (8,0)} | [ 5/3, 1 ] | (z+1, z4+1) | {1} | 2 | 3 | { 192 } | { 8T41 } | 22 [2] | 24 | 24 |
{(1,9), (2,6), (8,0)} | [ 3, 1 ] | (z+1, z6+1) | {2,4} | 2 | 1 | { 16, 32 } | { 8T17, 8T8 } | 23 [3·2] | 24 | 24 |
10 | {(1,10), (2,2), (8,0)} | [ 8, 1/3 ] | (z+1, z2+1) | {2} | 2 | 3 | | | 25 [.] | 27 | 27 | 27 |
11 | {(1,11), (2,6), (4,4), (8,0)} | [ 5, 1 ] | (z+1, z6+z2+1) | {2} | 3 | 1 | { 24, 192 } | { 8T13, 8T38 } | 23 [.] | 25 | 25 | 27 |
{(1,11), (4,4), (8,0)} | [ 7/3, 1 ] | (z+1, z4+1) | {1,2} | 2 | 3 | { 48, 192 } | { 8T24, 8T41 } | 23 [3·2] | 25 | 25 |
{(1,11), (2,6), (8,0)} | [ 5, 1 ] | (z+1, z6+1) | {2,4} | 2 | 1 | { 16, 32 } | { 8T17, 8T9, 8T8, 8T19 } | 24 [3·22] | 25 | 25 |
13 | {(1,13), (2,6), (4,4), (8,0)} | [ 7, 1 ] | (z+1, z6+z2+1) | {2} | 3 | 1 | { 192 } | { 8T38 } | 24 [.] | 26 | 26 | 28 |
{(1,13), (2,10), (4,4), (8,0)} | [ 3, 1 ] | (z3+z+1, z4+1) | {1} | 3 | 1 | { 96 } | { 8T33 } | 23 [22] | 25 | 25 |
{(1,13), (2,6), (8,0)} | [ 7, 1 ] | (z+1, z6+1) | {2,4} | 2 | 1 | { 32 } | { 8T17, 8T18, 8T15, 8T19 } | 25 [3·23] | 26 | 26 |
14 | {(1,14), (2,6), (4,4), (8,0)} | [ 8, 1 ] | (z+1, z6+z2+1) | {2} | 3 | 1 | { 192 } | { 8T38 } | 25 [.] | 27 | 27 | 28 |
{(1,14), (2,6), (8,0)} | [ 8, 1 ] | (z+1, z6+1) | {2} | 2 | 1 | | | 26 [25] | 27 | 27 |
15 | {(1,15), (2,10), (4,4), (8,0)} | [ 5, 3, 1 ] | (z+1, z2+1, z4+1) | {2,4,8} | 1 | 1 | { 8, 16, 32 } | { 8T18, 8T9, 8T11, 8T4, 8T19 } | 26 [25] | 26 | 26 | 28 |
{(1,15), (2,12), (4,4), (8,0)} | [ 3, 4, 1 ] | (z+1, z2+1, z4+1) | {1} | 2 | 3 | { 192 } | { 8T41 } | 25 [23] | 26 | 26 |
{(1,15), (2,10), (4,8), (8,0)} | [ 5, 1, 2 ] | (z+1, z2+1, z4+1) | {2} | 2 | 3 | { 48, ...} | { ..., 8T23 } | 26 [24] | 26 | 26 |
{(1,15), (4,8), (8,0)} | [ 7/3, 2 ] | (z+1, z4+1) | {1} | 2 | 3 | { 192 } | { 8T41 } | 24 [23] | 26 | 26 |
17 | {(1,17), (2,10), (4,4), (8,0)} | [ 7, 3, 1 ] | (z+1, z2+1, z4+1) | {2,4,8} | 1 | 1 | { 8, 16, 32 } | { 8T17, 8T6, 8T2, 8T9, 8T5, 8T15, 8T11, 8T8, 8T4 } | 27 [26] | 27 | 27 | 29 |
{(1,17), (2,12), (4,4), (8,0)} | [ 5, 4, 1 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | | | 27 [25] | 27 | 27 |
{(1,17), (2,10), (4,8), (8,0)} | [ 7, 1, 2 ] | (z+1, z2+1, z4+1) | {2} | 2 | 3 | | | 27 [25] | 27 | 27 |
{(1,17), (2,14), (4,8), (8,0)} | [ 3, 2 ] | (z3+z+1, z4+1) | {1} | 3 | 1 | { 96 } | { 8T33 } | 24 [23] | 26 | 26 |
18 | {(1,18), (2,10), (4,4), (8,0)} | [ 8, 3, 1 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | | | 28 [26] | 28 | 28 | 29 |
{(1,18), (2,10), (4,8), (8,0)} | [ 8, 1, 2 ] | (z+1, z2+1, z4+1) | {2} | 2 | 3 | | | 28 [26] | 28 | 28 |
19 | {(1,19), (2,12), (4,4), (8,0)} | [ 7, 4, 1 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | { 32, 64, ...} | { 8T29, ..., 8T19 } | 28 [26] | 28 | 28 | 29 |
{(1,19), (2,14), (4,8), (8,0)} | [ 5, 3, 2 ] | (z+1, z2+1, z4+1) | {2,4} | 1 | 1 | { 16, 32, 64 } | { 8T10, 8T29, 8T18 } | 27 [3·24] | 27 | 27 |
{(1,19), (2,16), (4,8), (8,0)} | [ 3, 4, 2 ] | (z+1, z2+1, z4+1) | {1} | 2 | 3 | { 192 } | { 8T41 } | 26 [24] | 27 | 27 |
20 | {(1,20), (2,12), (4,4), (8,0)} | [ 8, 4, 1 ] | (z+1, z2+1, z4+1) | {2,4} | 1 | 1 | { 16, 32, ...} | { 8T17, ..., 8T6, 8T15, 8T8 } | 29 [9·24] | 29 | 29 | 29 |
21 | {(1,21), (2,14), (4,8), (8,0)} | [ 7, 3, 2 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | { 16, 32, ...} | { ..., 8T6, 8T15, 8T8 } | 28 [26] | 28 | 28 | 29 |
{(1,21), (2,16), (4,8), (8,0)} | [ 5, 4, 2 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | { 32, 64 } | { 8T29, 8T20, 8T19 } | 28 [26] | 28 | 28 |
22 | {(1,22), (2,14), (4,8), (8,0)} | [ 8, 3, 2 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | | | 29 [27] | 29 | 29 | 29 |
23 | {(1,23), (2,16), (4,8), (8,0)} | [ 7, 4, 2 ] | (z+1, z2+1, z4+1) | {2} | 1 | 1 | | | 29 [27] | 29 | 29 | 29 |
24 | {(1,24), (2,16), (4,8), (8,0)} | [ 8, 4, 2 ] | (z+1, z2+1, z4+1) | {2,4,8} | 1 | 1 | { 8, 16, 32, ...} | { 8T7, 8T17, 8T6, ..., 8T15, 8T1, 8T8 } | 210 [37·23] | 210 | 210 | 210 |