Number Theory Tables, Department of Mathematics and Statistics, UNCG

Number of totally ramified extensions of Q2 of degree 8

Introduction

Polynomial Invariants #Aut Splitting Field Number of
j Ramification Polygon Slopes Residual Polynomials fT eT #Gal Gal Polynomials Extensions
1{(1,1), (8,0)}[ 1/7 ](z+1){1}37{ 168 }{ 8T36 }1232323
3{(1,3), (2,2), (8,0)}[ 1, 1/3 ](z+1, z2+1){2}23{ 48 }{ 8T23 }2232324
{(1,3), (8,0)}[ 3/7 ](z+1){1}37{ 168 }{ 8T36 }12323
5{(1,5), (2,2), (8,0)}[ 3, 1/3 ](z+1, z2+1){2}23{ 48 }{ 8T24, 8T23 }22242425
{(1,5), (8,0)}[ 5/7 ](z+1){1}37{ 168 }{ 8T36 }22424
7{(1,7), (2,2), (8,0)}[ 5, 1/3 ](z+1, z2+1){2}2323252526
{(1,7), (2,6), (4,4), (8,0)}[ 1 ](z7+z3+z+1){2}41{ 32 }{ 8T19 }22323
{(1,7), (4,4), (8,0)}[ 1 ](z7+z3+1){1}71{ 56 }{ 8T25 }12323
{(1,7), (2,6), (8,0)}[ 1 ](z7+z+1){1}71{ 56 }{ 8T25 }12323
{(1,7), (8,0)}[ 1 ](z7+1){2}31{ 24 }{ 8T13 }22323
9{(1,9), (2,2), (8,0)}[ 7, 1/3 ](z+1, z2+1){2}23{ 48, ...}{ ..., 8T24, 8T23 }24 [.]262627
{(1,9), (2,6), (4,4), (8,0)}[ 3, 1 ](z+1, z6+z2+1){2}31{ 192 }{ 8T38 }222424
{(1,9), (4,4), (8,0)}[ 5/3, 1 ](z+1, z4+1){1}23{ 192 }{ 8T41 }22 [2]2424
{(1,9), (2,6), (8,0)}[ 3, 1 ](z+1, z6+1){2,4}21{ 16, 32 }{ 8T17, 8T8 }23 [3·2]2424
10{(1,10), (2,2), (8,0)}[ 8, 1/3 ](z+1, z2+1){2}2325 [.]272727
11{(1,11), (2,6), (4,4), (8,0)}[ 5, 1 ](z+1, z6+z2+1){2}31{ 24, 192 }{ 8T13, 8T38 }23 [.]252527
{(1,11), (4,4), (8,0)}[ 7/3, 1 ](z+1, z4+1){1,2}23{ 48, 192 }{ 8T24, 8T41 }23 [3·2]2525
{(1,11), (2,6), (8,0)}[ 5, 1 ](z+1, z6+1){2,4}21{ 16, 32 }{ 8T17, 8T9, 8T8, 8T19 }24 [3·22]2525
13{(1,13), (2,6), (4,4), (8,0)}[ 7, 1 ](z+1, z6+z2+1){2}31{ 192 }{ 8T38 }24 [.]262628
{(1,13), (2,10), (4,4), (8,0)}[ 3, 1 ](z3+z+1, z4+1){1}31{ 96 }{ 8T33 }23 [22]2525
{(1,13), (2,6), (8,0)}[ 7, 1 ](z+1, z6+1){2,4}21{ 32 }{ 8T17, 8T18, 8T15, 8T19 }25 [3·23]2626
14{(1,14), (2,6), (4,4), (8,0)}[ 8, 1 ](z+1, z6+z2+1){2}31{ 192 }{ 8T38 }25 [.]272728
{(1,14), (2,6), (8,0)}[ 8, 1 ](z+1, z6+1){2}2126 [25]2727
15{(1,15), (2,10), (4,4), (8,0)}[ 5, 3, 1 ](z+1, z2+1, z4+1){2,4,8}11{ 8, 16, 32 }{ 8T18, 8T9, 8T11, 8T4, 8T19 }26 [25]262628
{(1,15), (2,12), (4,4), (8,0)}[ 3, 4, 1 ](z+1, z2+1, z4+1){1}23{ 192 }{ 8T41 }25 [23]2626
{(1,15), (2,10), (4,8), (8,0)}[ 5, 1, 2 ](z+1, z2+1, z4+1){2}23{ 48, ...}{ ..., 8T23 }26 [24]2626
{(1,15), (4,8), (8,0)}[ 7/3, 2 ](z+1, z4+1){1}23{ 192 }{ 8T41 }24 [23]2626
17{(1,17), (2,10), (4,4), (8,0)}[ 7, 3, 1 ](z+1, z2+1, z4+1){2,4,8}11{ 8, 16, 32 }{ 8T17, 8T6, 8T2, 8T9, 8T5, 8T15, 8T11, 8T8, 8T4 }27 [26]272729
{(1,17), (2,12), (4,4), (8,0)}[ 5, 4, 1 ](z+1, z2+1, z4+1){2}1127 [25]2727
{(1,17), (2,10), (4,8), (8,0)}[ 7, 1, 2 ](z+1, z2+1, z4+1){2}2327 [25]2727
{(1,17), (2,14), (4,8), (8,0)}[ 3, 2 ](z3+z+1, z4+1){1}31{ 96 }{ 8T33 }24 [23]2626
18{(1,18), (2,10), (4,4), (8,0)}[ 8, 3, 1 ](z+1, z2+1, z4+1){2}1128 [26]282829
{(1,18), (2,10), (4,8), (8,0)}[ 8, 1, 2 ](z+1, z2+1, z4+1){2}2328 [26]2828
19{(1,19), (2,12), (4,4), (8,0)}[ 7, 4, 1 ](z+1, z2+1, z4+1){2}11{ 32, 64, ...}{ 8T29, ..., 8T19 }28 [26]282829
{(1,19), (2,14), (4,8), (8,0)}[ 5, 3, 2 ](z+1, z2+1, z4+1){2,4}11{ 16, 32, 64 }{ 8T10, 8T29, 8T18 }27 [3·24]2727
{(1,19), (2,16), (4,8), (8,0)}[ 3, 4, 2 ](z+1, z2+1, z4+1){1}23{ 192 }{ 8T41 }26 [24]2727
20{(1,20), (2,12), (4,4), (8,0)}[ 8, 4, 1 ](z+1, z2+1, z4+1){2,4}11{ 16, 32, ...}{ 8T17, ..., 8T6, 8T15, 8T8 }29 [9·24]292929
21{(1,21), (2,14), (4,8), (8,0)}[ 7, 3, 2 ](z+1, z2+1, z4+1){2}11{ 16, 32, ...}{ ..., 8T6, 8T15, 8T8 }28 [26]282829
{(1,21), (2,16), (4,8), (8,0)}[ 5, 4, 2 ](z+1, z2+1, z4+1){2}11{ 32, 64 }{ 8T29, 8T20, 8T19 }28 [26]2828
22{(1,22), (2,14), (4,8), (8,0)}[ 8, 3, 2 ](z+1, z2+1, z4+1){2}1129 [27]292929
23{(1,23), (2,16), (4,8), (8,0)}[ 7, 4, 2 ](z+1, z2+1, z4+1){2}1129 [27]292929
24{(1,24), (2,16), (4,8), (8,0)}[ 8, 4, 2 ](z+1, z2+1, z4+1){2,4,8}11{ 8, 16, 32, ...}{ 8T7, 8T17, 8T6, ..., 8T15, 8T1, 8T8 }210 [37·23]210210210