Research: Number Theory
Congruence Subgroups of $$\textrm{PSL}(2,\mathbb{Z})$$
^ | Level 19 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
---|---|---|---|---|---|---|---|---|---|---|---|---|
19A14 | 285 | 1 | 285 | 5 | 6 | 1915 | 61 91 1815 | 19A2 | ||||
^ | Level 21 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
21A14 | 252 | 2 | 63 | 8 | 0 | 2112 | 67 127 | 21B4 21D5 21C6 | ||||
^ | Level 25 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
25A14 | 250 | 1 | 250 | 10 | 1 | 2510 | 101 2012 | 5C0 | ||||
^ | Level 28 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
28A14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 14G5 28J6 28C7 | ||||
28B14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 28H5 14A6 28C7 | ||||
28C14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 28C4 14A6 28I6 28J6 | ||||
^ | Level 30 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
30A14 | 240 | 1 | 240 | 0 | 3 | 106 306 |
430 815 | 10J1 30I5 | ||||
^ | Level 31 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
31A14 | 248 | 2 | 248 | 8 | 5 | 318 | 61 101 3016 | 1A0 | ||||
^ | Level 32 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
32A14 | 256 | 1 | 256 | 16 | 1 | 328 | 1616 | 16G2 |
Part of a table of all congruence subgroups of Genus 14, which is included in a collection of tables of all congruence subgroups of PSL(2,$$\mathbb{Z})$$ of genus up to 24. The algorithm used to generate these tables is described in the article Congruence Subgroups of PSL(2,$$\mathbb{Z})$$ of Genus up to 24 by Chris Cummins and Sebastian Pauli.