Research: Number Theory

Congruence Subgroups of $$\textrm{PSL}(2,\mathbb{Z})$$

^ Level 19 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
19A14 285 1 285 5 6 1915 61  91  1815 19A2
^ Level 21 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
21A14 252 2 63 8 0 2112 67  127 21B4 21D5 21C6
^ Level 25 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
25A14 250 1 250 10 1 2510 101  2012 5C0
^ Level 28 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
28A14 252 2 63 8 0 146
286
621 14G5 28J6 28C7
28B14 252 2 63 8 0 146
286
621 28H5 14A6 28C7
28C14 252 2 63 8 0 146
286
621 28C4 14A6 28I6 28J6
^ Level 30 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
30A14 240 1 240 0 3 106
306
430  815 10J1 30I5
^ Level 31 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
31A14 248 2 248 8 5 318 61  101  3016 1A0
^ Level 32 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
32A14 256 1 256 16 1 328 1616 16G2

Part of a table of all congruence subgroups of Genus 14, which is included in a collection of tables of all congruence subgroups of PSL(2,$$\mathbb{Z})$$ of genus up to 24. The algorithm used to generate these tables is described in the article Congruence Subgroups of PSL(2,$$\mathbb{Z})$$ of Genus up to 24 by Chris Cummins and Sebastian Pauli.