Skip to main content
Logo image

Section 11.4 Base \(b\) Numbers

Instead of using base \(10\) or base \(2\text{,}\) we can use any other natural number \(b>1\) as a base. To represent any number in base \(b\text{,}\) we must specify \(b\) unique symbols that represent the \(b\) values from \(0\) to \(b-1\text{.}\) Those symbols are the first \(b\) symbols from the list
\begin{equation*} 0,1,2,3,4,5,6,7,8,9,\mathrm{A},\mathrm{B},\mathrm{C},\dots\text{.} \end{equation*}
When considering bases \(b\) with \(b\le10\text{,}\) we use the numbers \(0,1,2,3,\dots,b-1\) as our \(b\) unique symbols. However, if \(b>10\text{,}\) we use all of the numbers \(0, 1, 2, \dots, 8, 9\) as well as enough capital letters to complete the list of \(b\) unique symbols. The value of \(\mathrm{A}\) is the decimal number \(10\text{,}\) the value of \(\mathrm{B}\) is the decimal number \(11\text{,}\) the value of \(\mathrm{C}\) is the decimal number \(12\text{,}\) and so on. We do not consider bases greater than \(36\) where we have \(Z_{36}=35\text{,}\) so we do not need further symbols. There are many applications of numbers in other bases. In particular, computer related fields frequently use base \(2\text{,}\) \(8\text{,}\) and \(16\text{.}\)
In the video in Figure 11.19 introduce numbers represented in bases other than \(2\) and \(10\text{.}\) Further details are give below.
Figure 11.19. Base \(b\) Numbers by Matt Farmer and Stephen Steward
Figure 11.20 provides various numbers written in base \(2\text{,}\) \(3\text{,}\) \(8\text{,}\) \(10\text{,}\) \(12\text{,}\) and \(16\) as well as in English and French. When counting in some languages, there are irregularities of words which originate in other number systems. In English, the numbers \(11\) and \(12\) do not follow the pattern of the other numbers between \(10\) and \(20\text{.}\) In French, the numbers \(11\) to \(16\) follow a different pattern than the numbers \(17\) to \(19\text{,}\) and the numbers \(30\) to \(79\) follow a different pattern than the numbers \(80\) to \(99\text{.}\)
English French binary (base 2) ternary (base 3) octal (base 8) decimal (base 10) dozenal (base 12) hexa-decimal (base 16)
zero zéro \(\mathrm{0}_2\) \(\mathrm{0}_3\) \(\mathrm{0}_8\) \(\mathrm{0}\) \(\mathrm{0}_{12}\) \(\mathrm{0}_{16}\)
one un \(\mathrm{1}_2\) \(\mathrm{1}_3\) \(\mathrm{1}_8\) \(\mathrm{1}\) \(\mathrm{1}_{12}\) \(\mathrm{1}_{16}\)
two deux \(\mathrm{10}_2\) \(\mathrm{2}_3\) \(\mathrm{2}_8\) \(\mathrm{2}\) \(\mathrm{2}_{12}\) \(\mathrm{2}_{16}\)
three trois \(\mathrm{11}_2\) \(\mathrm{10}_3\) \(\mathrm{3}_8\) \(\mathrm{3}\) \(\mathrm{3}_{12}\) \(\mathrm{3}_{16}\)
four quatre \(\mathrm{100}_2\) \(\mathrm{11}_3\) \(\mathrm{4}_8\) \(\mathrm{4}\) \(\mathrm{4}_{12}\) \(\mathrm{4}_{16}\)
five cinq \(\mathrm{101}_2\) \(\mathrm{12}_3\) \(\mathrm{5}_8\) \(\mathrm{5}\) \(\mathrm{5}_{12}\) \(\mathrm{5}_{16}\)
six six \(\mathrm{110}_2\) \(\mathrm{20}_3\) \(\mathrm{6}_8\) \(\mathrm{6}\) \(\mathrm{6}_{12}\) \(\mathrm{6}_{16}\)
seven sept \(\mathrm{111}_2\) \(\mathrm{21}_3\) \(\mathrm{7}_8\) \(\mathrm{7}\) \(\mathrm{7}_{12}\) \(\mathrm{7}_{16}\)
eight huit \(\mathrm{1000}_2\) \(\mathrm{22}_3\) \(\mathrm{10}_8\) \(\mathrm{8}\) \(\mathrm{8}_{12}\) \(\mathrm{8}_{16}\)
nine neuf \(\mathrm{1001}_2\) \(\mathrm{100}_3\) \(\mathrm{11}_8\) \(\mathrm{9}\) \(\mathrm{9}_{12}\) \(\mathrm{9}_{16}\)
ten dix \(\mathrm{1010}_2\) \(\mathrm{101}_3\) \(\mathrm{12}_8\) \(\mathrm{10}\) \(\mathrm{A}_{12}\) \(\mathrm{A}_{16}\)
eleven onze \(\mathrm{1011}_2\) \(\mathrm{102}_3\) \(\mathrm{13}_8\) \(\mathrm{11}\) \(\mathrm{B}_{12}\) \(\mathrm{B}_{16}\)
twelve douze \(\mathrm{1100}_2\) \(\mathrm{110}_3\) \(\mathrm{14}_8\) \(\mathrm{12}\) \(\mathrm{10}_{12}\) \(\mathrm{C}_{16}\)
thirteen treize \(\mathrm{1101}_2\) \(\mathrm{111}_3\) \(\mathrm{15}_8\) \(\mathrm{13}\) \(\mathrm{11}_{12}\) \(\mathrm{D}_{16}\)
fourteen quatorze \(\mathrm{1110}_2\) \(\mathrm{112}_3\) \(\mathrm{16}_8\) \(\mathrm{14}\) \(\mathrm{12}_{12}\) \(\mathrm{E}_{16}\)
fifteen quinze \(\mathrm{1111}_2\) \(\mathrm{120}_3\) \(\mathrm{17}_8\) \(\mathrm{15}\) \(\mathrm{13}_{12}\) \(\mathrm{F}_{16}\)
sixteen seize \(\mathrm{10000}_2\) \(\mathrm{121}_3\) \(\mathrm{20}_8\) \(\mathrm{16}\) \(\mathrm{14}_{12}\) \(\mathrm{10}_{16}\)
seventeen dixsept \(\mathrm{10001}_2\) \(\mathrm{122}_3\) \(\mathrm{21}_8\) \(\mathrm{17}\) \(\mathrm{15}_{12}\) \(\mathrm{11}_{16}\)
twenty vingt \(\mathrm{10100}_2\) \(\mathrm{202}_3\) \(\mathrm{24}_8\) \(\mathrm{20}\) \(\mathrm{18}_{12}\) \(\mathrm{14}_{16}\)
sixty soixante \(\mathrm{111100}_2\) \(\mathrm{2020}_3\) \(\mathrm{74}_8\) \(\mathrm{60}\) \(\mathrm{50}_{12}\) \(\mathrm{3C}_{16}\)
eighty quatrevingt \(\mathrm{1010000}_2\) \(\mathrm{2222}_3\) \(\mathrm{120}_8\) \(\mathrm{80}\) \(\mathrm{68}_{12}\) \(\mathrm{50}_{16}\)
ninety quatrevingt-dix \(\mathrm{1011010}_2\) \(\mathrm{10100}_3\) \(\mathrm{132}_8\) \(\mathrm{90}\) \(\mathrm{76}_{12}\) \(\mathrm{5A}_{16}\)
hundred cent \(\mathrm{1100100}_2\) \(\mathrm{10201}_3\) \(\mathrm{144}_8\) \(\mathrm{100}\) \(\mathrm{84}_{12}\) \(\mathrm{64}_{16}\)
Figure 11.20. Selected numbers in English, French, and bases \(2\text{,}\) \(3\text{,}\) \(8\text{,}\) \(10\text{,}\) \(12\text{,}\) \(16\)
We generalize the decimal (base 10) expansion to other bases in the following way. Let \(b\in \N\) with \(b>1\text{.}\) We can write any number \(a\in\N\) with \(a\lt b^n\) in the form
\begin{equation*} a=r_{n-1}b^{n-1}+r_{n-2}b^{n-2}+\dots+r_1 b+r_0\text{,} \end{equation*}
where \(n\) is the number of digits in the base \(b\) representation of \(a\) and \(0\le r_i\lt b\) for \(i\in\{0,\dots,n-1\}\text{.}\)
To write the number \(a\) in base \(b\text{,}\) we extract the digits \(r_0\) to \(r_{n-1}\) from the expanded notation. To distinguish numbers in different bases, we add a subscript \(b\) to the number in base \(b\) if \(b\ne 10\text{.}\) So, the number \(a\) from above would be written as
\begin{equation*} a=(r_{n-1}\dots r_2 r_1 r_0)_b \end{equation*}
in base \(b\text{.}\) In Figure 11.21 and Figure 11.22 we give examples of numbers in base \(7\) and base \(16\) with their digits, expansions, and the numbers in base \(10\text{.}\)
\(a\) in base \(7\) digits of \(a\) base \(7\) expansion of \(a\) \(a\) in
base \(7\) \(7^3\) \(7^2\) \(7^1\) \(7^0\) base 10
\(1_7\) \(1\) \(1\cdot 1\) \(1\)
\(10_7\) \(1\) \(0\) \(1\cdot 7+0\cdot 1\) \(7\)
\(100_7\) \(1\) \(0\) \(0\) \(1\cdot 7^2+0\cdot 7+0\cdot 1\) \(49\)
\(200_7\) \(2\) \(0\) \(0\) \(2\cdot 7^2+0\cdot 7+0\cdot 1\) \(98\)
\(6200_7\) \(6\) \(2\) \(0\) \(0\) \(6\cdot 7^3+2\cdot 7^2+0\cdot 7+0\cdot 1\) \(341\)
Figure 11.21. Numbers in base \(7\text{,}\) their base \(7\) digits, their base \(7\) expansion, and in base \(10\text{.}\) The \(7\) digits used in base \(7\) numbers are \(0\text{,}\) \(1\text{,}\) \(2\text{,}\) \(3\text{,}\) \(4\text{,}\) \(5\text{,}\) and \(6\text{.}\)
\(a\) in base \(16\) digits of \(a\) base \(16\) expansion of \(a\) \(a\) in
base \(16\) \(16^3\) \(16^2\) \(16^1\) \(16^0\) base 10
\(1_{16}\) \(1\) \(1\cdot 1\) \(1\)
\(\mathrm{C}_{16}\) \(\mathrm{C}\) \(12\cdot 1\) \(12\)
\(10_{16}\) \(1\) \(0\) \(1\cdot 16+0\cdot 1\) \(16\)
\(\mathrm{A}0_{16}\) \(\mathrm{A}\) \(0\) \(10\cdot 16+0\cdot 1\) \(160\)
\(\mathrm{FF}_{16}\) \(\mathrm{F}\) \(\mathrm{F}\) \(15\cdot 16+15\cdot 1\) \(255\)
\(100_{16}\) \(1\) \(0\) \(0\) \(1\cdot 16^2+0\cdot 16+0\cdot 1\) \(256\)
\(200_{16}\) \(2\) \(0\) \(0\) \(2\cdot 16^2+0\cdot 16+0\cdot 1\) \(512\)
\(6\mathrm{B}00_{16}\) \(6\) \(\mathrm{B}\) \(0\) \(0\) \(6\cdot 16^3+11\cdot 16^2+0\cdot 16+0\cdot 1\) \(27392\)
Figure 11.22. Hexadecimal (base \(16\)) numbers, their base \(16\) digits, their base \(16\) expansion, and in base \(10\text{.}\) The \(16\) symbols used in hexadecimal numbers are \(0\text{,}\) \(1\text{,}\) \(2\text{,}\) \(3\text{,}\) \(4\text{,}\) \(5\text{,}\) \(6\text{,}\) \(7\text{,}\) \(8\text{,}\) \(9\text{,}\) \(\mathrm{A}\text{,}\) \(\mathrm{B}\text{,}\) \(\mathrm{C}\text{,}\) \(\mathrm{D}\text{,}\) \(\mathrm{E}\text{,}\) and \(\mathrm{F}\text{.}\) We have \(\mathrm{A}_{16}=10\text{,}\) \(\mathrm{B}_{16}=11\text{,}\) \(\mathrm{C}_{16}=12\text{,}\) \(\mathrm{E}_{16}=13\text{,}\) \(\mathrm{E}_{16}=14\text{,}\) and \(\mathrm{F}_{16}=15\text{.}\)
We compute the decimal representation of a base \(b\) number by evaluating its base \(b\) expansion.

Example 11.23. Conversion to decimal representation.

Given numbers in various bases \(b\text{,}\) we convert these numbers to their decimal representations by writing out their base \(b\) expansions and then evaluating them.
  1. \(\displaystyle 1101_2=1\cdot2^3+1\cdot 2^2+0\cdot 2+1 \cdot 1=13\)
  2. \(\displaystyle 1101_3=1\cdot3^3+1\cdot 3^2+0\cdot 3+1 \cdot 1=37\)
  3. \(\displaystyle 201_3=2\cdot 3^2+0\cdot 3+1 \cdot 1=19\)
  4. \(\displaystyle 201_5=2\cdot 5^2+0\cdot 5+1 \cdot 1=51\)
  5. \(\displaystyle 201_{16}=2\cdot 16^2+0\cdot 16+1 \cdot 1=513\)
  6. \(\displaystyle \mathrm{A}3\mathrm{B}_{16}=10\cdot16^2+3\cdot 16+11 \cdot 1=2619\)

Problem 11.24. Convert from base \(18\) to base \(10\).

Give the base \(18\) expansion of \(99GD872_{18}\) and covert \(99GD872_{18}\) to decimal representation.
Solution.
In base {18} we use the characters \(0\text{,}\)\(1\text{,}\)\(2\text{,}\)\(3\text{,}\)\(4\text{,}\)\(5\text{,}\)\(6\text{,}\)\(7\text{,}\)\(8\text{,}\)\(9\text{,}\)\(A\text{,}\)\(B\text{,}\)\(C\text{,}\)\(D\text{,}\)\(E\text{,}\)\(F\text{,}\)\(G\text{,}\)\(H\) for the digits. The values of these are
\(0_{18} = 0\) \(1_{18} = 1\) \(2_{18} = 2\) \(3_{18} = 3\) \(4_{18} = 4\) \(5_{18} = 5\)
\(6_{18} = 6\) \(7_{18} = 7\) \(8_{18} = 8\) \(9_{18} = 9\) \(A_{18} = 10\) \(B_{18} = 11\)
\(C_{18} = 12\) \(D_{18} = 13\) \(E_{18} = 14\) \(F_{18} = 15\) \(G_{18} = 16\) \(H_{18} = 17\)
So as the base 18 expansion of \(99GD872{18}\) we get
\(99GD872_{18}\)\(= 9\cdot{18}^6 + 9\cdot{18}^5 + 16\cdot {18}^4 + 13\cdot{18}^3 + 8\cdot{18}^2 + 7\cdot{18} + 2\cdot 1 \text{.}\)
Evaluating the expression on the right yields the decimal representation of \(99GD872_{18}\text{:}\)
\(99GD872_{18}\) \(= 9\cdot{18}^6 + 9\cdot{18}^5 + 16\cdot {18}^4 + 13\cdot{18}^3 + 8\cdot{18}^2 + 7\cdot{18} + 2\cdot 1\)\(= 324874280\)
So to convert a number in base \(b\) representation, where \(b\) to base \(10\) representation we
  • write down the base \(b\) expansion, which consists of the digits of the base \(b\) representation converted to decimal and the place values, which are the powers of \(b\)
  • evaluate this expression to obtain the base \(10\) representation.
Try yourself.

Checkpoint 11.25. Other base less than \(10\) to base \(10\).

Give the expanded base \(9\) form of \(548725_{9}\text{.}\) Enter all digits in decimal form, that is, for \(A\) enter \(10\text{.}\)
\(\cdot 9^6 +\) \(\cdot 9^5 +\) \(\cdot 9^4 +\) \(\cdot 9^3 +\) \(\cdot 9^2 +\) \(\cdot 9+\) \(\cdot 1\)
Give \(548725_{9}\) in decimal representation.
In Checkpoint 11.26 do the same for a base greater than \(10\text{.}\) Recall that \(\mathrm{A}\) in the base \(b\) representation is a \(10\) in the base \(b\) expansion, \(\mathrm{B}\) in the base \(b\) representation is a \(11\) in the base \(b\) expansion, \(\mathrm{C}\) in the base \(b\) representation is a \(12\) in the base \(b\) expansion, and so on.

Checkpoint 11.26. Other base greater than \(10\) to base \(10\).

Give the expanded base \(19\) form of \(89BDIG5_{19}\text{.}\) Enter all digits in decimal form, that is, for \(A\) enter \(10\text{.}\)
\(\cdot 19^6 +\) \(\cdot 19^5 +\) \(\cdot 19^4 +\) \(\cdot 19^3 +\) \(\cdot 19^2 +\) \(\cdot 19+\) \(\cdot 1\)
Give \(89BDIG5_{19}\) in decimal representation.