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Abstract. Let Γ denote the subgroup Γ±
0 (N) of GL2(Z), N prime. Let V be the space of

holomorphic modular forms for Γ. Let Vα ⊂ V denote the various Hecke eigenspaces, with
the last Vα denoting the Eisenstein subspace. If M ∈ V is a modular symbol, define the type
of M to be (t1, . . . , tk, tE) where tα = 1 if the projection of M to Vα is nonzero, and tα = 0
otherwise.

For each N ≤ 100, we compute the types of the modular symbols in an increasing series
of concentric boxes. We prove an obstruction for a given type to occur, related to the
existence of “Eisenstein primes.” For any given type that survives this obstruction, we give
computational evidence that the proportion of its occurrence in a box stabilizes as the boxes
grow larger. We interpret the limit of this ratio (assuming it exists) as the box size goes to
infinity as the probability that a random modular symbol will have this type.

Contrary to our original expectation, it does not appear to be the case that with probability
1 a random symbol will project nontrivially to each Vi. Whether the limit referred to in the
previous paragraph actually exists, and why the limits have the various values that appear
in our computations, are open questions.

1. General framework

Define

Γ±
0 (N) =

{[
a b
c d

]
∈ GL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
.

We work with this group, rather than the more usual Γ0(N) = Γ±
0 (N) ∩ SL2(Z) because the

phenomena we are investigating are already seen using the larger group, and the computations
run twice as fast.
Fix a prime N , and let Γ = Γ±

0 (N). Let H denote the tame Hecke algebra, which is
generated over Z by Tℓ for ℓ ∤ N . Let V denote the cohomology V = H1(Γ,Q). It is an
H-module. Decompose V into a direct sum of QH-irreducible subspaces:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk ⊕ E,

where E is the line spanned by the Eisenstein series. (Because N is prime, E is one-
dimensional.) It is well-known that every package of Hecke eigenvalues belonging to a
cuspform of weight 2 and level N appears in one of the Vi, and also that E appears, as
written above.

For i = 1, 2, . . . , k, let πi : V → Vi denote the projection onto Vi.
1 Let πE : V → E denote

projection onto the Eisenstein space E.
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1Note that if we decompose Vi further into 1-dimensional QH eigenspaces, and if v ∈ V , then the projection

of v to any of these eigenlines is nonzero if and only if πi(v) ̸= 0. This is seen using the Gal(Q̄/Q) action on
V ⊗Q Q and the fact that v is rational.
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Definition 1.1. For v ∈ V , define the type of v to be

t(v) = (t1, t2, . . . , tk, tE),

where

tα =

{
1 if πα(v) ̸= 0,

0 if πα(v) = 0.

We say that a type is cuspidal if tE = 0 and noncuspidal if tE = 1.

The main task of this paper is to explore which types occur and with what probabilities.
This question seems not to be treated in the literature. We will see that there is an obstruction
to certain types occurring coming from Eisenstein primes. If a type escapes this obstruction,
we can ask if it occurs, and if so, how often on average. The type (1, 1, . . . , 1) always survives
the Eisenstein obstruction. A first guess might be that this type should occur with probability
1, since one might think that a random modular symbol is in “general position” in the
cohomology. Our computations show that this is not likely to be the case. However, we have
no explanation for the detailed probabilities we encounter in our computations.

Given two cusps x, y ∈ P1(Q), by definition the modular symbol [x, y] is the fundamental
class of the geodesic in the bordified upper half plane H from x to y in the relative homology
H1(H, ∂H,Q). Its image modulo Γ in H1(H/Γ, ∂H/Γ,Q) is denoted [x, y]Γ. As recalled
in [AY21], H1(H/Γ, ∂H/Γ,Q) can be canonically identified with H0(Γ, St⊗ZQ) where St is
the Steinberg representation of GL2(Q).
Let Γ0 = Γ ∩ SL2(Z), and let M2(Γ0) denote the complex vector space of holomorphic

modular forms of weight 2 for Γ0, and M cusp
2 (Γ0) the subspace of cuspforms. Borel-Serre

duality gives a canonical isomorphism

H0(Γ0, St)
∼→ H1(Γ0,Q),

and the latter cohomology group tensored with C is isomorphic to M2(Γ0). We define
H1

cusp(Γ0,Q) to be H1(Γ0,Q) ∩M cusp
2 (Γ0).

In [AY21] we erroneously asserted that Borel-Serre duality holds if Γ0 is replaced by Γ.
This is not true, because Γ contains the element J = diag(1,−1) that reverses orientation
on H. However, we may identify H1(Γ,Q) with the J-invariants in H1(Γ0,Q). What we
actually compute in this paper is [x, y]Γ in the space of J-invariants in H1(H/Γ0, ∂H/Γ0,Q)
(where J acts on H by z 7→ −z̄), viewed as an element of H1(Γ0,Q)J .

The authors would like to thank the referee for a helpful review. This work was supported
by a grant from the Simons Foundation (848154, DY).

2. An Eisenstein obstruction

Let U ⊂ V be the set

U = {[x, y]Γ | x, y ∈ P1(Q)},
and let U ′ ⊂ U be the “cuspidal subset”,

U ′ = {[x, γx]Γ | x ∈ P1(Q), γ ∈ Γ}.
It is well-known that U generates H1(Γ,Q) over Q. In [AY21] we show that the elements of
U ′ are cuspidal cohomology classes.

Let e = 1/0, and let f = 0/1 in P1(Q). Then πE([e, f ]Γ) ̸= 0, e and f represent the Γ-orbits
of cusps, and πE([x, y]Γ) = 0 for all [x, y]Γ ∈ U ′. (Note that [e, f ] is fixed under J , so the
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Eisenstein class for Γ0 is indeed in the cohomology of Γ.) It follows easily that U ′ generates
H1

cusp(Γ,Q) over Q (see the proof of Theorem 2.4).

Proposition 2.1. Let α = a/b ∈ P1(Q) be written in reduced form, and let N be prime.
Then α is Γ-equivalent to e = 1/0 if N divides b and is Γ-equivalent to f = 0/1 otherwise.

Proof. This is standard. See for example page 238 in [MS76]. □

Definition 2.2. Let Λ ⊂ V denote the Z-lattice generated by U . We call this the modular
symbol lattice. Let Λ′ ⊂ Λ denote the sublattice generated by U ′, which we call the cuspidal
modular symbol lattice.

Remark 2.3. Although Λ and Λ′ are defined from an infinite amount of data (they are lattices
spanned by an infinite number of modular symbols), we can reduce to a finite computation
by identifying Γ\GL2(Z) with P1(Z/NZ) and by using the well-known fact that any [x, y]Γ
can be written as a sum of “unimodular” symbols [a/b, p/q]Γ with aq − bp = 1.

It is clear that Λ ⊗ Q = V and Λ′ ⊗ Q = V1 ⊕ · · · ⊕ Vk. Our first goal is to study the
subsets U and U ′ of these lattices.

Theorem 2.4.

(1) The image of the cuspidal modular symbols in V is the cuspidal modular symbol lattice,

U ′ = Λ′.

(2) The image of the modular symbols in V is the union of three cosets in Λ/Λ′,

U = Λ′ ∪ ([e, f ]Γ + Λ′) ∪ (−[e, f ]Γ + Λ′).

Proof. First we show (1). From [AY21, Theorem 5.3 (ii)], we have

U ′ = {[f, γf ]Γ | γ ∈ Γ}.

It suffices to show that U ′ is closed under negation and addition.
Let γ ∈ Γ, and consider [f, γf ]Γ. Then

−[f, γf ]Γ = [γf, f ]Γ = [f, γ−1f ]Γ

which is in U ′, as desired.
Let γ, τ ∈ Γ, and consider [f, γf ]Γ and [f, τf ]Γ in U ′. Then

[f, γf ]Γ + [f, τf ]Γ = [γ−1f, f ]Γ + [f, τf ]Γ

= [γ−1f, τf ]Γ

= [f, γτf ]Γ,

which is in U ′, as desired.
Next we show (2). Suppose [x, y]Γ ∈ U \ U ′ is not cuspidal. Then x is not equivalent to y.

From Proposition 2.1, either

(1) x is Γ-equivalent to f and y is Γ-equivalent to e; or
(2) x is Γ-equivalent to e and y is Γ-equivalent to f .
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Suppose x = γf and y = τe for some γ, τ ∈ Γ. Then

[x, y]Γ + [e, f ]Γ = [γf, τe]Γ + [e, f ]Γ

= [τ−1γf, e]Γ + [e, f ]Γ

= [τ−1γf, f ]Γ

= [f, γ−1τf ]Γ.

It follows that
[x, y]Γ = −[e, f ]Γ + [f, σf ]Γ, (1)

for some σ ∈ Γ. In particular, [x, y]Γ ∈ −[e, f ]Γ + Λ′.
If instead x is Γ-equivalent to e and y is Γ-equivalent to f , then a similar argument shows

[x, y]Γ ∈ [e, f ]Γ + Λ′. The result follows. □

Next we look more closely at how the image of U sits inside the lattice Λ. For i = 1, 2, . . . , k,
let Λi ⊂ Vi be the lattice

Λi = spanZ{πi([x, y]Γ) | [x, y]Γ ∈ U}.
Let Λ′

i ⊆ Λi denote the submodule generated by πi([x, y]Γ) with [x, y]Γ ∈ U ′. It follows from
Theorem 2.4 that the index [Λi : Λ

′
i] is 1 if and only if πi([e, f ]Γ) ∈ Λ′

i.
From Theorem 2.4, we have that the image in V of the cuspidal modular symbols is the full

cuspidal modular symbol lattice, U ′ = Λ′. Because V1⊕· · ·⊕Vk is a rational decomposition of
the rational subspace H1

cusp(Γ,Q) of H1(Γ,Q), and because U ′ is a full lattice in H1
cusp(Γ,Q),

it follows that any given cuspidal type will occur for infinitely many different elements of U ′.
An obstruction to a non-cuspidal type occurring in U can be measured by a certain index:

Proposition 2.5. Suppose [Λi : Λ
′
i] ̸= 1, and let [x, y]Γ ∈ V have type

t([x, y]Γ) = (t1, t2, . . . , tk, tE).

Then tE = 1 implies that ti = 1.

Proof. Suppose tE = 1. Then [x, y]Γ is not cuspidal. Without loss of generality, from (1), we
have

πi([x, y]Γ) = πi([f, γf ]Γ)− πi([e, f ]Γ),

for some γ ∈ Γ. Since [f, γf ]Γ is cuspidal, we have πi([f, γf ]Γ) ∈ Λ′
i. On the other hand, if

[Λi : Λ
′
i] ̸= 1, then πi([e, f ]) ̸∈ Λ′

i. Then

πi([x, y]Γ) = πi([f, γf ]Γ)− πi([e, f ]Γ) ̸= 0,

so ti = 1, as desired, □

Here is a theorem that was first suggested by our data:

Theorem 2.6. Let N ≥ 11, i ≥ 1, and p a prime. Suppose the index [Λi : Λ
′
i] is divisible by

p. Then there is a newform of level N and weight 2 whose Hecke eigenvalue aℓ is congruent
modulo p to ℓ+ 1 for all ℓ not dividing N . If p ̸= 2, then p divides N − 1.

Proof. Tensor everything with C so that we may identify modular symbols with holomorphic
modular forms of weight 2. Let ε ∈ E ∩ Λ be primitive in Λ. Since from Theorem 2.4 we
know that Λ = Λ′ + Z[e, f ]Γ, write

ε = [x, γx]Γ + b[e, f ]Γ
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for some cusp x, some γ ∈ Γ, and some b ∈ Z. Then

0 = πi(ε) = πi([x, γx]Γ) + bπi([e, f ]Γ).

Since πi([x, γx]Γ) ∈ Λ′
i, we find that bπi([e, f ]Γ) ∈ Λ′

i,
We have proven that πi([e, f ]Γ) is a generator of Λi/Λ

′
i. Therefore the index [Λi : Λ

′
i] divides

b and so p divides b. It follows that

ε ≡ [x, γx]Γ mod pΛ.

Since ε was chosen to be primitive in Λ, we have ε ̸∈ pΛ. So the mod p reduction ε ∈ Λ/pΛ
is an H-eigenvector, where the eigenvalue of Tℓ is ℓ+ 1 for all ℓ ̸ | N . But [x, γx]Γ is cuspidal.
Therefore this package of H-eigenvalues must be equal modulo a prime over p to the package
of eigenvalues of a newform in Λ′

i.
In other words p is an Eisenstein prime, a prime in the support of the Eisenstein ideal. It

follows that if p is odd, p divides N − 1. See [WWE21, Section 1.1.]. □

There are 1229 primes less than 10,000. With the exception of prime levels N ∈
{2, 3, 5, 7, 13}, each prime level in this range has a nontrivial cuspidal space. For these
prime levels N < 10,000, we observe from our data that

• the product of the indices divides N − 1, i.e.,

k∏
i=1

[Λi : Λ
′
i] | (N − 1);

• the quotient

Q =
(N − 1)∏
i[Λi : Λ′

i]

is a positive power of 2 times a nonnegative power of 3;
• for all N in the range mentioned above, the index [Λi : Λ

′
i] is 1 for all i except for

exactly one or two i’s. There are two exceptional i’s exactly when

N = 71, 211, 307, 397, 487, 577, 673, 1871, 1999, 3001, 4621, 9931.

For these primes, see Table 1.

We do not have an explanation for these observations.

3. Prevalence

Next, we wish to learn what a “random” modular symbol looks like. From Theorem 2.4,
we see that the image of the modular symbols in V is the union of three cosets in Λ/Λ′,
namely the cuspidal lattice Λ′ and its translates by ±[e, f ]Γ. If a “random” modular symbol
is chosen, in which coset do we expect it land? 2 Can we say more about the type of a
random modular symbol? For example, if we compute the images of modular symbols in
some box, what are the relative proportions of the types that occur? In this section, we begin
to examine these questions.
Proposition 2.1 allows us to predict the likelihood that a given symbol [x, y]Γ is cuspidal,

since cuspidal symbols must have x and y Γ-equivalent to each other.

2Since [x, y]Γ = −[y, x]Γ, the two nontrivial cosets will occur an equal number of times, and the real
question in this regard is simply whether the chosen modular symbol is cuspidal or not.
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Table 1. Exceptional prime levels N < 10,000 with two Hecke irreducible
cuspidal spaces Vi with indices [Λi : Λ

′
i] > 1.

N dim(V1) dim(V2) [Λ1 : Λ
′
1] [Λ2 : Λ

′
2]

71 3 3 7 5
211 2 9 5 7
307 2 9 3 17
397 5 10 11 3
487 2 16 3 27
577 2 18 3 8
673 4 24 7 4
1871 2 98 5 187
1999 2 94 3 111
3001 2 132 5 25
4621 2 196 5 77
9931 2 434 5 331

Lemma 3.1. Let N be prime, let Γ = Γ±
0 (N), and let r be a positive integer. There are

exactly

N2r

(
2

1 +N

)
+ 2N r − 2

1 +N

pairs (a, b) ∈ Z2 − {(0, 0)} with −N r ≤ a ≤ N r and 0 ≤ b ≤ N r such that a/b ∈ P1(Q) is
Γ-equivalent to e = 1/0.

Proof. Let (a, b) ∈ Z2 with −N r ≤ a ≤ N r and 0 ≤ b ≤ N r. Let α = a
b
∈ P1(Q). From

Proposition 2.1, α is Γ-equivalent to e = 1/0 if and only if N divides the denominator of α
written in reduced form. Equivalently, νN (a) < νN (b) and a ̸= 0, where νN (x) is the largest e
such that N e divides x, except that νN(0) = ∞.
Let S be the set

S = {(a, b) ∈ Z2 | −N r ≤ a ≤ N r, 0 ≤ b ≤ N r, a ̸= 0, νN(a) < νN(b)}.

There are 2N r pairs of the form (a, 0) in S and 2N r − 2 pairs of the form (a,N r) in S. For
k = 1, 2, . . . , r − 1, there are N r−k −N r−k−1 choices for b with νN(b) = k and 2N r − 2N r−k

choices for a with νN(a) < k for (a, b) ∈ S. Thus

#S = 4N r − 2 + 2
r−1∑
k=1

(N r −N r−k)(N r−k −N r−k−1).

We expand the summand and break up the sum into two pieces. The first piece is a
telescoping sum and the second piece is geometric, namely the alternating sum of the powers
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of N from N to −N2r−2, so

r−1∑
k=1

(N r −N r−k)(N r−k −N r−k−1) =
r−1∑
k=1

(N2r−k −N2r−k−1) +
r−1∑
k=1

(N2r−2k−1 −N2r−2k)

= (N2r−1 −N r) +

(
N −N2r−1

1 +N

)
= −N r +

N2r−1 +N2r +N −N2r−1

1 +N

= −N r +
N2r +N

1 +N
.

We compute

#S = 4N r − 2 + 2

(
−N r +

N2r +N

1 +N

)
= 2N r − 2 + 2

(
N2r

1 +N
+

N

1 +N

)
= 2N r +N2r

(
2

1 +N

)
− 2 +

2N

1 +N

= N2r

(
2

1 +N

)
+ 2N r − 2

1 +N
,

as desired. □

Theorem 3.2. Let N be prime, let Γ = Γ±
0 (N), and let r be a positive integer. Let Mr denote

the set of matrices

Mr =

{[
a p
b q

] ∣∣∣∣ [ab
]
,

[
p
q

]
̸=
[
0
0

]
,−N r ≤ a, p ≤ N r, 0 ≤ b, q ≤ N r

}
.

Let Cr ⊂ Mr denote the subset of matrices

[
a p
b q

]
that give rise to cuspidal modular symbols

[a/b, p/q]Γ ∈ U ′. The the limiting proportion of cuspidal symbols is

lim
r→∞

#Cr

#Mr

=
1 +N2

(1 +N)2
.

Proof. First we compute #Mr. For

[
a p
b q

]
∈ Mr, there are

(2N r + 1)(N r + 1)− 1 = 2N2r + 3N r

choices for (a, b) and the same number for (p, q). Thus

#Mr = (2N2r + 3N r)2.

From Lemma 3.1, we have N2r
(

2
1+N

)
+ 2N r − 2

1+N
pairs (a, b) that give cusps that are

Γ-equivalent to e = 1/0. The remaining N2r
(

2N
1+N

)
+ N r + 2

1+N
pairs are Γ-equivalent to

f = 0/1.
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It follows that

#Cr =

(
N2r

(
2

1 +N

)
+ 2N r − 2

1 +N

)2

+

(
N2r

(
2N

1 +N

)
+N r +

2

1 +N

)2

.

Let B = N r. Then as r → ∞, we have B → ∞ and only the highest order term affects the
limit. Thus

lim
r→∞

#Cr

#Mr

= lim
B→∞

B4
((

2
1+N

)2
+
(

2N
1+N

)2)
4B4

=
1

4

((
2

1 +N

)2

+

(
2N

1 +N

)2
)

=
1 +N2

(1 +N)2
.

□

Corollary 3.3. Let a, b, p, q ∈ Z with

[
a
b

]
and

[
p
q

]
not equal to

[
0
0

]
. Let [a/b, p/q]Γ ∈ V be

chosen randomly from a rectangular box as in the preceding theorem and suppose it has type

t([a/b, p/q]Γ) = (t1, t2, . . . , tk, tE).

Then as the box grows to infinity, the probability that tE = 0 is 1+N2

(1+N)2
, and the probability

that tE = 1 is 2N
(1+N)2

.

Remark 3.4. This result shows that a random modular symbol is likely cuspidal, with the
likelihood getting higher as the level increases. Note, however, that neither the result nor the
proof, gives any indication of the proportion of zero symbols, i.e. those of type (0, 0, . . . , 0).
Nevertheless, the experimental results in Section 4 suggest that most random modular symbols
are nontrivial and cuspidal.

We verify Corollary 3.3 in our computations. The predicted probabilities in Corollary 3.3
are indeed observed. The convergence to the limiting proportions is fairly fast, as may be
seen for example in Figure 1.

In the next section we provide a view of the data we collected.

4. Experimental results on prevalence

In this section, we examine in detail the types and prevalence of each type that occur for
the prime levels N < 100. All calculations are done in Magma V2.25-8 [BCP97].

We collect data from a box of size B for each level N as follows. Let

M(B) =

{[
a p
b q

] ∣∣∣∣ [ab
]
,

[
p
q

]
̸=
[
0
0

]
,−B ≤ a, p ≤ B, 0 ≤ b, q ≤ B

}
.

For each type τ , let TN (B, τ) ⊂ M(B) denote the subset of matrices

[
a p
b q

]
that give rise to

modular symbols [a/b, p/q]Γ of type τ . Let pN(B, τ) denote the proportion of TN(B, τ) in
M(B),

pN(B, τ) =
#TN(B, τ)

#M(B)
.



RANDOM MODULAR SYMBOLS 9

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

actual cusp
actual Eis
cusp limit
Eis limit

Cuspidal and Eisenstein Percentages for N = 37

Figure 1. The percentage of cuspidal and noncuspidal (Eis) modular symbols
observed for level 37 as a function of box size, verifying the limiting value of
approximately 94.875% cuspidal symbols and 5.125% Eisenstein symbols as
the box size grows. Note that (1 + 372)/(1 + 37)2 ≈ 0.94875.

Here are some observations on the prevalence of various types in our data.

• It appears that, given N , the probability that a certain type occurs does stabilize
asymptotically as the box grows, i.e., for each type τ , it appears that as B → ∞, the
proportion pN(B, τ) converges.

• Let τ0 denote the trivial type (0, 0, . . . , 0). Let

zN = lim
B→∞

pN(B, τ0).

Then from our data it appears that zN > 0, and that zN → 0 as N → ∞.
• The previous observation together with Corollary 3.3 suggests most random modular
symbols are nontrivial and cuspidal.

• For most N there seems to be a dominant type. However, for N = 89, it seems like
two types may have the same asymptotic probability. Could there be some kind of
symmetry that would account for this (if it is indeed the case)? It is possible that a
similar behavior would occur for N = 79 if we took B large enough.

• The case of N = 61 is interesting because the graphs of two types cross around
B = 120, a behavior that doesn’t appear in the other graphs.

• When N = 89 there occurs a phenomenon unique among our data. Namely, the
prevalence of one of the types, although nonzero, is extremely small.

It would be interesting to have even a heuristic explanation of the phenomena we have
discovered.
The graphs in Figures 2, 3, and 4 are constructed as follows. The different kinds of dots

correspond to the different types, as shown. The horizontal axis is the B-axis. The vertical
axis measures the proportion of modular symbols in M(B) which have the given type. Thus
the dots measure the cumulative proportions as the boxes grow. There are discontinuities in
the graphs when B is a multiple of N . This is because when B is a multiple of N , there are
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Table 2. Lattice indices and the quotient Q = (N − 1)/[Λ1 : Λ
′
1] of modular

symbols for level N ∈ {11, 17, 19, 23, 29, 31, 41, 47, 59}.

N dim(V1) [Λ1 : Λ
′
1] Q

11 1 5 2
17 1 2 23

19 1 3 2 · 3
23 2 11 2
29 2 7 22

31 2 5 2 · 3
41 3 5 23

47 4 23 2
59 5 29 2

suddenly many more fractions that have denominators divisible by N and therefore cusps
equivalent to e. This causes a momentary increase in the number the modular symbols in the
±[e, f ]Γ coset, i.e., non-cuspidal. We compute dots for all B ≤ 200 in increments of 1. We
analyzed #M(200) = 6,496,360,000 symbols for each prime level N < 100. These plots and
more are available at https://mathstats.uncg.edu/yasaki/random-modular-symbols/.

We also provide a table listing N , then for each N , the types which survive the Eisenstein
obstruction, and for each type τ , the value of pN(B, τ) for B = 200. See Tables 3, 6, and 8.

4.1. One Hecke irreducible subspace. For N ∈ {2, 3, 5, 7, 13}, we have that the cuspidal
space is trivial so V = E, the 1-dimensional Eisenstein space. Thus the only cuspidal type
is (0), and the only Eisenstein type is (1). Thus the prevalence of Eisenstein and cuspidal
symbols given in Corollary 3.3 coincides exactly with the values of the prevalence of the two
types.

4.2. Two Hecke irreducible subspaces. For N ∈ {11, 17, 19, 23, 29, 31, 41, 47, 59}, we
have that V decomposes as a direct sum of Hecke irreducible subspaces

V = V1 ⊕ E.

The dimension dim(V1), the index [Λ1 : Λ
′
1], and the quotient Q = (N − 1)/[Λ1 : Λ

′
1] are given

in Table 2. The type of [e, f ]Γ is (1, 1), while the fact that [Λ1 : Λ
′
1] ̸= 1 combined with

Proposition 2.5 shows that type (0, 1) does not arise for these levels. Thus, the types that
arise for N ∈ {11, 17, 19, 23, 29, 31, 41, 47, 59} are exactly {(0, 0), (1, 0), (1, 1)}.
For N in {11, 17, 19, 23, 29, 31, 41, 47, 59}, the Hecke irreducible subspace V1 is the Galois

span of the newforms 11.2.a.a, 17.2.a.a, 19.2.a.a, 23.2.a.a, 29.2.a.a, 31.2.a.a, 41.2.a.a, 47.2.a.a,
and 59.2.a.a, respectively, in the notation of the L-functions and modular forms database
(LMFDB) [LMF23].

4.3. Three Hecke irreducible subspaces. For N ∈ {37, 43, 53, 61, 71, 79, 83, 97}, we have
that V decomposes as a direct sum of Hecke irreducible subspaces

V = V1 ⊕ V2 ⊕ E.

The dimensions dim(Vi) and the indices [Λi : Λ
′
i] for i = 1, 2 are given in Table 4. We also

give the quotient Q = (N − 1)/Π2
i=1[Λi : Λ

′
i].

https://mathstats.uncg.edu/yasaki/random-modular-symbols/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/11/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/17/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/19/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/29/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/31/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/41/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/47/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/59/2/a/a/
https://www.lmfdb.org/
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Figure 2. Prevalence plots for levels N ∈ {11, 17, 19, 23, 29, 31, 41, 47, 59}.

Table 3. Observed asymptotic prevalence for each type for level N ∈
{11, 17, 19, 23, 29, 31, 41, 47, 59}.

type 11 17 19 23 29 31 41 47 59

(0, 0) 9.203 13.352 11.315 3.456 3.482 3.809 1.659 0.972 0.628
(1, 0) 74.964 75.977 78.806 88.299 89.978 89.651 93.577 94.264 95.523
(1, 1) 15.832 10.671 9.879 8.244 6.540 6.540 4.764 4.764 3.849

For N ∈ {37, 43, 53, 61, 79, 83, 97}, we have t([e, f ]Γ) = (0, 1, 1) and [Λ2 : Λ
′
2] ̸= 1. Thus any

type of the form (∗, 0, 1) does not arise. In particular, for N ∈ {37, 43, 53, 61, 79, 83, 97}, the
types that arise are exactly

{(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.

For N = 71, we have t([e, f ]Γ) = (1, 1, 1) and [Λi : Λ
′
i] ̸= 1 for i = 1, 2. Thus any type of

the form (∗, 0, 1) or (0, ∗, 1) does not arise. In particular, for N = 71, the types that arise are
exactly

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}.
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Figure 3. Prevalence plots for levels N ∈ {37, 43, 53, 61, 71, 79, 83, 97}.

Table 4. Lattice indices, and the quotient Q = (N − 1)/Π2
i=1[Λi : Λ

′
i] of

modular symbols for level N ∈ {37, 43, 53, 61, 71, 79, 83, 97}.

N dim(V1) dim(V2) [Λ1 : Λ
′
1] [Λ2 : Λ

′
2] Q

37 1 1 1 3 22 · 3
43 1 2 1 7 2 · 3
53 1 3 1 13 22

61 1 3 1 5 22 · 3
71 3 3 7 5 2
79 1 5 1 13 2 · 3
83 1 6 1 41 2
97 3 4 1 4 23 · 3

4.4. Four Hecke irreducible subspaces. For N ∈ {67, 73, 89}, we have that V decomposes
as a direct sum of Hecke irreducible subspaces

V = V1 ⊕ V2 ⊕ V3 ⊕ E.

The dimensions dim(Vi) and the indices [Λi : Λ
′
i] for i = 1, 2, 3 are given in Table 9. We also

give the quotient Q = (N − 1)/Π3
i=1[Λi : Λ

′
i].
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Table 5. The cuspforms that generate the Hecke irreducible subspaces Vi for
i = 1, 2 for level N ∈ {37, 43, 53, 61, 71, 79, 83, 97}.

N V1 V2

37 37.2.a.a 37.2.a.b
43 43.2.a.a 43.2.a.b
53 53.2.a.a 53.2.a.b
61 61.2.a.a 61.2.a.b
71 71.2.a.a 71.2.a.b
79 79.2.a.a 79.2.a.b
83 83.2.a.a 83.2.a.b
97 97.2.a.a 97.2.a.b

Table 6. Observed asymptotic prevalence for each type for level N ∈
{37, 43, 53, 61, 71, 79, 83, 97}.

type 37 43 53 61 71 79 83 97

(0, 0, 0) 6.902 2.254 1.025 1.682 0.511 0.691 0.373 0.729
(0, 1, 0) 24.774 28.668 28.753 44.563 1.811 50.177 27.027 12.971
(0, 1, 1) 2.191 1.805 1.389 2.151 1.801 0.982 0.671
(1, 0, 0) 13.810 1.254 0.601 0.234 0.792 0.103 0.172 0.319
(1, 1, 0) 48.853 63.060 65.773 49.673 93.972 46.115 69.514 83.067
(1, 1, 1) 3.470 2.959 2.459 1.697 2.914 1.113 1.932 2.243

Table 7. Lattice indices, and the quotient Q = (N − 1)/Π3
i=1[Λi : Λ

′
i] of

modular symbols for level N ∈ {67, 73, 89}.

N dim(V1) dim(V2) dim(V3) [Λ1 : Λ
′
1] [Λ2 : Λ

′
2] [Λ3 : Λ

′
3] Q

67 1 2 2 1 1 11 2 · 3
73 1 2 2 1 1 3 23 · 3
89 1 1 5 1 1 11 23

For N ∈ {67, 73, 89}, we have t([e, f ]Γ) = (1, 0, 1, 1) and [Λ3 : Λ
′
3] ̸= 1. Thus any type of

the form (∗, ∗, 0, 1) does not arise. In particular, for N ∈ {67, 73, 89}, the types that arise
are exactly

{(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 1, 1),
(1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0), (1, 0, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/37/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/43/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/43/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/53/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/53/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/61/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/71/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/71/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/79/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/79/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/83/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/83/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/97/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/97/2/a/b/


14 AVNER ASH AND DAN YASAKI

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

N = 67
type (0,0,0,0)
type (0,0,1,0)
type (0,1,0,0)
type (0,1,1,0)
type (1,0,0,0)
type (1,0,1,0)
type (1,1,0,0)
type (1,1,1,0)
type (0,0,1,1)
type (0,1,1,1)
type (1,0,1,1)
type (1,1,1,1)

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

N = 73
type (0,0,0,0)
type (0,0,1,0)
type (0,1,0,0)
type (0,1,1,0)
type (1,0,0,0)
type (1,0,1,0)
type (1,1,0,0)
type (1,1,1,0)
type (0,0,1,1)
type (0,1,1,1)
type (1,0,1,1)
type (1,1,1,1)

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

N = 89
type (0,0,0,0)
type (0,0,1,0)
type (0,1,0,0)
type (0,1,1,0)
type (1,0,0,0)
type (1,0,1,0)
type (1,1,0,0)
type (1,1,1,0)
type (0,0,1,1)
type (0,1,1,1)
type (1,0,1,1)
type (1,1,1,1)

Figure 4. Prevalence plots for levels N ∈ {67, 73, 89}.
Table 8. Observed asymptotic prevalence for each type for level N ∈ {67, 73, 89}.

type 67 73 89

(0, 0, 0, 0) 0.808 1.102 0.506
(0, 0, 1, 0) 0.564 4.277 9.862
(0, 0, 1, 1) 0.078 0.102 0.416
(0, 1, 0, 0) 0.530 0.521 0.056
(0, 1, 1, 0) 6.079 14.456 11.178
(0, 1, 1, 1) 0.225 0.618 0.338
(1, 0, 0, 0) 0.861 0.272 0.003
(1, 0, 1, 0) 12.761 14.423 37.509
(1, 0, 1, 1) 0.585 0.748 1.273
(1, 1, 0, 0) 0.733 0.119 9.41× 10−5

(1, 1, 1, 0) 74.750 61.916 37.973
(1, 1, 1, 1) 2.025 1.447 0.887

Table 9. The cuspforms that generate the Hecke irreducible subspaces Vi for
i = 1, 2, 3 for level N ∈ {67, 73, 89}.

N V1 V2 V3

67 67.2.a.a 67.2.a.b 67.2.a.c
73 73.2.a.a 73.2.a.b 73.2.a.c
89 89.2.a.b 89.2.a.a 89.2.a.c

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/67/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/67/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/67/2/a/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/73/2/a/c/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/89/2/a/b/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/89/2/a/a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/89/2/a/c/
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