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Goal

St(Q2;Z) is isomorphic to modular symbols.
H0(Γ,St(Q2;C)) ≃ H1(Γ;C) computes weight 2 modular forms
for Γ.

Understand the image of the set of modular symbols in the
homology.

Is it finite or infinite?
Does it have any structure?
How are the symbols distributed among Hecke
eigenspaces?
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Modular symbols for GL2(Z)

Abelian group generated by [v ,w ] where v ,w are elements in
the projective space P1(Q) such that

1 [v ,w ] = −[w , v ] for all v ,w ∈ P1(Q);
2 [v ,w ] = [v , x ] + [x ,w ] for all v ,w , x ∈ P1(Q);
3 [a,b] = 0 for all a,b ∈ Q2 such that the determinant of

[a,b] equals 0.
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Modular symbols
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Unimodular symbols: A small generating set
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Reduction algorithm: Manin’s trick

There is a reduction algorithm using continued fractions to
express any modular symbol as a Z-linear combination of
unimodular symbols.
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Notation

Fix prime level N.

Γ = Γ±0 (N) =

{[
a b
c d

]
∈ GL2(Z)

∣∣∣∣ c ≡ 0 mod N
}

V = H1(Γ,Q)
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Types

Decompose V into QH-irreducible subspaces:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk ⊕ E , with πi : V → Vi .

Definition
For v ∈ V , define the type of v to be

t(v) = (t1, t2, . . . , tk , tE),

where

tα =

{
1 if πα(v) ̸= 0,
0 if πα(v) = 0.

We examined in detail the types for prime N < 100 for
6,496,360,000 modular symbols.
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One eigenspace V = E : N ∈ {2,3,5,7,13}
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Figure: N = 2
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One eigenspace V = E : N ∈ {2,3,5,7,13}
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One eigenspace V = E : N ∈ {2,3,5,7,13}
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One eigenspace V = E : N ∈ {2,3,5,7,13}
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One eigenspace V = E : N ∈ {2,3,5,7,13}
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Figure: N = 13

Dan Yasaki joint work with Avner Ash Random Modular Symbols 13 / 56



What does a “random” modular symbol look like?

Theorem

Let a,b,p,q ∈ Z with
[
a
b

]
and

[
p
q

]
not equal to

[
0
0

]
be chosen

from a “rectangular box”, and suppose it has type

t([a/b,p/q]Γ) = (t1, t2, . . . , tk , tE).

Then as the box grows to infinity, the probability that tE = 0 is
1+N2

(1+N)2 , and the probability that tE = 1 is 2N
(1+N)2 .
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N = 37
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Cuspidal and Eisenstein Percentages for N = 37

Figure: The percentage of cuspidal and noncuspidal (Eis) modular
symbols observed for level 37 as a function of box size.
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Set of modular symbols and cuspidal symbols

U = {[x , y ]Γ | x , y ∈ P1(Q)} ⊆ V

U ′ = {[x , γx ]Γ | x ∈ P1(Q), γ ∈ Γ} ⊆ U

U and U ′ are a priori just sets.
U ′ elements are cuspidal classes.
U generates V , and U ′ generates H1

cusp(Γ,Q).
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Lattice of modular symbols and cuspidal symbols

Let Λ ⊂ V be the Z-lattice generated by U. Define Λ′

analogously.

Theorem

1 The image of the cuspidal modular symbols in V is the
cuspidal modular symbol lattice,

U ′ = Λ′.

2 The image of the modular symbols in V is the union of
three cosets in Λ/Λ′,

U = Λ′ ∪ ([e, f ]Γ + Λ′) ∪ (−[e, f ]Γ + Λ′),

where e = 1/0 and f = 0/1 in P1(Q).
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Proof of 1

Proof.
Note: U ′ = {[f , γf ]Γ | γ ∈ Γ}. Show that U ′ is closed under
negation and addition.
Negation:

−[f , γf ]Γ = [γf , f ]Γ = [f , γ−1f ]Γ

Addition:

[f , γf ]Γ + [f , τ f ]Γ = [γ−1f , f ]Γ + [f , τ f ]Γ
= [γ−1f , τ f ]Γ
= [f , γτ f ]Γ

Dan Yasaki joint work with Avner Ash Random Modular Symbols 18 / 56



Proof of 2

Proof.
If [x , y ]Γ ∈ U is not cuspidal, then

1 x is Γ-equivalent to f and y is Γ-equivalent to e; or
2 x is Γ-equivalent to e and y is Γ-equivalent to f .

Suppose x = γf and y = τe for some γ, τ ∈ Γ. Then

[x , y ]Γ + [e, f ]Γ = [γf , τe]Γ + [e, f ]Γ = [τ−1γf ,e]Γ + [e, f ]Γ
= [τ−1γf , f ]Γ = [f , γ−1τ f ]Γ.

It follows that
[x , y ]Γ = −[e, f ]Γ + [f , σf ]Γ,

for some σ ∈ Γ, so [x , y ]Γ ∈ −[e, f ]Γ + Λ′.
A similar argument shows the other case.
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No obstruction for cuspidal types

Since U ′ = Λ′, every nontrivial cuspidal type occurs infinitely
often. There is no obstruction for purely cuspidal types.

Dan Yasaki joint work with Avner Ash Random Modular Symbols 20 / 56



Eisenstein obstruction for non-cuspidal types

For i = 1,2, . . . , k , let Λi ⊂ Vi be the lattice

Λi = spanZ{πi([x , y ]Γ) | [x , y ]Γ ∈ U}.

Define Λ′
i similarly.

Theorem
Suppose [Λi : Λ

′
i ] ̸= 1, and let [x , y ]Γ ∈ V have type

t([x , y ]Γ) = (t1, t2, . . . , tk , tE).

Then tE = 1 implies that ti = 1.

Dan Yasaki joint work with Avner Ash Random Modular Symbols 21 / 56



Eisenstein obstruction for non-cuspidal types

Key facts:
For non-cuspidal [x , y ]Γ, [x , y ]Γ = −[e, f ]Γ + [f , σf ]Γ.
[Λi : Λ

′
i ] = 1 if and only if πi([e, f ]Γ) ∈ Λ′

i .

Proof.
Suppose tE = 1. Then [x , y ]Γ is not cuspidal, and

πi([x , y ]Γ) = πi([f , γf ]Γ)− πi([e, f ]Γ), for some γ ∈ Γ.

Since [f , γf ]Γ is cuspidal, we have πi([f , γf ]Γ) ∈ Λ′
i . If

[Λi : Λ
′
i ] ̸= 1, then πi([e, f ]) ̸∈ Λ′

i , and so

πi([x , y ]Γ) = πi([f , γf ]Γ)− πi([e, f ]Γ) ̸= 0.
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Congruence of forms

Corollary

If p ̸= 2 divides the index [Λi : Λ
′
i ], then there is a newform of

level N and weight 2 whose Hecke eigenvalue aℓ is congruent
modulo p to ℓ+ 1 for all ℓ not dividing N. Such a prime p
divides N − 1.

N = 11,p = 5,aℓ; N = 23,p = 11,bℓ, β = 1
2(1 +

√
5)

ℓ 2 3 5 7 11 13 . . .

aℓ −2 −1 1 −2 1 4 . . .
aℓ mod 5 3 4 1 3 1 4 . . .

bℓ −β 2β − 1 −2β −2β + 2 2β − 4 3 . . .
bℓ mod p11 3 4 6 8 1 3 . . .
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Observations

For these prime levels N < 10,000, we observe from our data
that

the product of the indices divides N − 1, i.e.,

k∏
i=1

[Λi : Λ
′
i ] | (N − 1);

the quotient

Q =
(N − 1)∏

i [Λi : Λ
′
i ]

is a positive power of 2 times a nonnegative power of 3;

Dan Yasaki joint work with Avner Ash Random Modular Symbols 24 / 56



Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}

Table: Lattice indices and the quotient Q = (N − 1)/[Λ1 : Λ
′
1].

Obstruction prevents type (0,1).

N dim(V1) [Λ1 : Λ
′
1] Q

11 1 5 2
17 1 2 23

19 1 3 2 · 3
23 2 11 2
29 2 7 22

31 2 5 2 · 3
41 3 5 23

47 4 23 2
59 5 29 2
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Two eigenspaces V = V1 ⊕ E :
N ∈ {11,17,19,23,29,31,41,47,59}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}

Table: Lattice indices, and the quotient Q = (N − 1)/Π2
i=1[Λi : Λ

′
i ]. Two

obstructions for N = 71.

N dim(V1) dim(V2) [Λ1 : Λ
′
1] [Λ2 : Λ

′
2] Q

37 1 1 1 3 22 · 3
43 1 2 1 7 2 · 3
53 1 3 1 13 22

61 1 3 1 5 22 · 3
71 3 3 7 5 2
79 1 5 1 13 2 · 3
83 1 6 1 41 2
97 3 4 1 4 23 · 3
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

N = 71
type (0,0,0)
type (0,1,0)
type (1,0,0)
type (1,1,0)
type (1,1,1)

Dan Yasaki joint work with Avner Ash Random Modular Symbols 40 / 56



Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Three eigenspaces V = V1 ⊕ V2 ⊕ E :
N ∈ {37,43,53,61,71,79,83,97}
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Four eigenspaces V = V1 ⊕ V2 ⊕ V3 ⊕ E :
N ∈ {67,73,89}

Table: Lattice indices, and the quotient Q = (N − 1)/Π3
i=1[Λi : Λ

′
i ].

dim(V1) = 1

N dim(V2) dim(V3) [Λ1 : Λ
′
1] [Λ2 : Λ

′
2] [Λ3 : Λ

′
3] Q

67 2 2 1 1 11 2 · 3
73 2 2 1 1 3 23 · 3
89 1 5 1 1 11 23
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Four eigenspaces V = V1 ⊕ V2 ⊕ V3 ⊕ E :
N ∈ {67,73,89}

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

p
e
rc
e
n
t

bound

N = 67
type (0,0,0,0)
type (0,0,1,0)
type (0,1,0,0)
type (0,1,1,0)
type (1,0,0,0)
type (1,0,1,0)
type (1,1,0,0)
type (1,1,1,0)
type (0,0,1,1)
type (0,1,1,1)
type (1,0,1,1)
type (1,1,1,1)

Dan Yasaki joint work with Avner Ash Random Modular Symbols 45 / 56



Four eigenspaces V = V1 ⊕ V2 ⊕ V3 ⊕ E :
N ∈ {67,73,89}
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Four eigenspaces V = V1 ⊕ V2 ⊕ V3 ⊕ E :
N ∈ {67,73,89}
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Other directions

Bianchi modular symbol (GL2 over imaginary quadratic
fields)
Steinberg homology and group cohomology
Higher rank modular symbols (GL3(Z))
Sharbly complex (GL2 over CM quartic fields, GL3 over
imaginary quadratic fields)
Difficulties: analogue of unimodular symbols, reduction
algorithm, computationally expensive
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Higher rank modular symbols

Theorem (Ash-Rudolph, 1979)

1 As abelian group, St(Q3;Z) is generated by [v1, v2, v3] as
v1, v2, v3 range over all elements of Q3.

2 The following relations hold:
1 [v1, v2, v3] = 0 if v1, v2, v3 do not span Q3.
2 [v1, v2, v3] = [kv1, v2, v3] for any nonzero k ∈ Q;
3 [v1, v2, v3] = (−1)s[vs(1), vs(2), vs(3)] for any permutation

s ∈ Sn;
4 [v1, v2, v3] = [x , v2, v3] + [v1, x , v3] + [v1, v2, x ] for any

nonzero x ∈ Qn.

We call the fourth relation “passing through x”.
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Reduction Algorithm for n = 3

[van Geemen-van der Kallen-Top-Verberkmoes 1997]

Let A =
[
v1 v2 v3

]
, det(A) > 1. There is m > 1 and a

nonzero vector in the kernel of A modulo m, so there exists
a1,a2,a3 ∈ Z such that

x = 1
m (a1v1 + a2v2 + a3v3) ∈ Z3

|ai | ≤ m/2

Passing through x shrinks the determinant by a factor of at
least 1/2.
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Some preliminary plots

The computations are much more expensive, and it looks like
we need to go far to see different phenomena.
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n = 3,N = 11 plots
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n = 3,N = 17 plots
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n = 3,N = 19 plots
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n = 3,N = 23 plots
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Thank you.
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