Random Modular Symbols

Dan Yasaki joint work with Avner Ash

Department of Mathematics and Statistics The University of North Carolina at Greensboro (work supported by Simons Foundation 848154)

September 6, 2024 Explicit Methods in Number Theory **Oberwolfach**

B

4 0 8

 $2Q$

Goal

 $St(\mathbb{Q}^2; \mathbb{Z})$ is isomorphic to modular symbols. $H_0(\Gamma, \mathsf{St}(\mathbb{Q}^2;\mathbb{C})) \simeq H^1(\Gamma;\mathbb{C})$ computes weight 2 modular forms for Γ.

Understand the image of the set of modular symbols in the homology.

- o Is it finite or infinite?
- Does it have any structure?
- How are the symbols distributed among Hecke eigenspaces?

 $A\cong A\rightarrow A\cong A$

Abelian group generated by [*v*, *w*] where *v*, *w* are elements in the projective space $\mathbb{P}^1(\mathbb{Q})$ such that

$$
\bullet \ \ [v,w] = -[w,v] \text{ for all } v,w \in \mathbb{P}^1(\mathbb{Q});
$$

$$
\bullet \ \ [v,w]=[v,x]+[x,w] \text{ for all } v,w,x\in \mathbb{P}^1(\mathbb{Q});
$$

3 [a, b] = 0 for all $a, b \in \mathbb{Q}^2$ such that the determinant of [*a*, *b*] equals 0.

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

Modular symbols

(ロ) (伊)

Unimodular symbols: A small generating set

重

×

4 0 8

Reduction algorithm: Manin's trick

There is a reduction algorithm using continued fractions to express any modular symbol as a Z-linear combination of unimodular symbols.

Fix prime level *N*.

$$
\Gamma = \Gamma_0^{\pm}(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{Z}) \middle| c \equiv 0 \mod N \right\}
$$

$$
V = H^1(\Gamma, \mathbb{Q})
$$

AN UNC
GREENS

重

(ロ) (個) (差) (差)

0RO 2990

Decompose *V* into $\mathbb{O}H$ -irreducible subspaces:

$$
V = V_1 \oplus V_2 \oplus \cdots \oplus V_k \oplus E, \quad \text{with} \quad \pi_i \colon V \to V_i.
$$

Definition

For $v \in V$, define the *type of v* to be

$$
t(v)=(t_1,t_2,\ldots,t_k,t_E),
$$

where

$$
t_{\alpha} = \begin{cases} 1 & \text{if } \pi_{\alpha}(v) \neq 0, \\ 0 & \text{if } \pi_{\alpha}(v) = 0. \end{cases}
$$

We examined in detail the types for prime *N* < 100 for 6,496,360,000 modular symbols.

ヨメ メヨメ

4 0 8 4 @ $2Q$

UNC GRE

ă

0 R O

UNC

ă

UNC

UNC

UNC

Theorem

Let
$$
a, b, p, q \in \mathbb{Z}
$$
 with $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} p \\ q \end{bmatrix}$ not equal to $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ be chosen from a "rectangular box", and suppose it has type

$$
t([a/b, p/q]_{\Gamma})=(t_1, t_2, \ldots, t_k, t_E).
$$

Then as the box grows to infinity, the probability that $t_E = 0$ *is* $1 + N^2$ $\frac{1+N^2}{(1+N)^2}$, and the probability that $t_E=1$ is $\frac{2N}{(1+N)^2}$.

(重)→ (重)

 Ω

Figure: The percentage of cuspidal and noncuspidal (Eis) modular symbols observed for level 37 as a function of box size.

80RD

 290

ă,

 \leftarrow 4 0 8

Set of modular symbols and cuspidal symbols

$$
U = \{ [x, y]_{\Gamma} \mid x, y \in \mathbb{P}^1(\mathbb{Q}) \} \subseteq V
$$

$$
U' = \{ [x, \gamma x]_{\Gamma} \mid x \in \mathbb{P}^1(\mathbb{Q}), \gamma \in \Gamma \} \subseteq U
$$

- *U* and *U'* are a priori just sets.
- *U* ′ elements are cuspidal classes.
- *U* generates *V*, and *U'* generates $H^1_{\text{cusp}}(\Gamma, \mathbb{Q})$.

 $\mathcal{A} \xrightarrow{\sim} \mathcal{A} \xrightarrow{\sim} \mathcal{B} \xrightarrow{\sim}$

 $2Q$

Lattice of modular symbols and cuspidal symbols

Let $Λ ⊂ V$ be the $ℤ$ -lattice generated by *U*. Define Λ' analogously.

Theorem

¹ *The image of the cuspidal modular symbols in V is the cuspidal modular symbol lattice,*

$$
\mathit{U}'=\Lambda'.
$$

² *The image of the modular symbols in V is the union of three cosets in* Λ/Λ ′ *,*

$$
U=\Lambda'\cup([e,f]_\Gamma+\Lambda')\cup(-[e,f]_\Gamma+\Lambda'),
$$

where e = $1/0$ *and f* = $0/1$ *in* $\mathbb{P}^1(\mathbb{Q})$ *.*

 290

(不思う) 不思う

(ロ) (伊)

Proof.

Note: $U' = \{ [f, �gamma f]_\Gamma \mid \gamma \in Γ \}$. Show that U' is closed under negation and addition. **Negation**:

$$
-[f,\gamma f]_{\Gamma}=[\gamma f,f]_{\Gamma}=[f,\gamma^{-1}f]_{\Gamma}
$$

Addition:

$$
[f, \gamma f]_{\Gamma} + [f, \tau f]_{\Gamma} = [\gamma^{-1} f, f]_{\Gamma} + [f, \tau f]_{\Gamma}
$$

= $[\gamma^{-1} f, \tau f]_{\Gamma}$
= $[f, \gamma \tau f]_{\Gamma}$

П

ă

 299

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ⊁

Proof.

If $[x, y]_F \in U$ is not cuspidal, then

¹ *x* is Γ-equivalent to *f* and *y* is Γ-equivalent to *e*; or

² *x* is Γ-equivalent to *e* and *y* is Γ-equivalent to *f*.

Suppose $x = \gamma f$ and $y = \tau e$ for some $\gamma, \tau \in \Gamma$. Then

$$
[x, y]_{\Gamma} + [e, f]_{\Gamma} = [\gamma f, \tau e]_{\Gamma} + [e, f]_{\Gamma} = [\tau^{-1} \gamma f, e]_{\Gamma} + [e, f]_{\Gamma}
$$

= $[\tau^{-1} \gamma f, f]_{\Gamma} = [f, \gamma^{-1} \tau f]_{\Gamma}.$

It follows that

$$
[x, y]_{\Gamma} = -[\mathbf{e}, f]_{\Gamma} + [f, \sigma f]_{\Gamma},
$$

for some $\sigma \in \Gamma$, so $[x, y]_{\Gamma} \in -[e, f]_{\Gamma} + \Lambda'$. A similar argument shows the other case.

 Ω

④ ヨシ ④ ヨシ

← ロ ▶ → 伊

Since $U' = \Lambda'$, every nontrivial cuspidal type occurs infinitely often. There is **no obstruction for purely cuspidal types**.

Eisenstein obstruction for non-cuspidal types

For
$$
i = 1, 2, ..., k
$$
, let $\Lambda_i \subset V_i$ be the lattice

$$
\Lambda_i=\mathrm{span}_{\mathbb{Z}}\{\pi_i([x,y]_\Gamma)\mid [x,y]_\Gamma\in U\}.
$$

Define Λ'_i similarly.

Theorem

 $Suppose [\Lambda_i: \Lambda'_i] \neq 1$, and let $[x, y]_{\Gamma} \in V$ have type

$$
t([x, y]_{\Gamma})=(t_1, t_2, \ldots, t_k, t_E).
$$

Then t_E = 1 *implies that t_i = 1.*

→ 重き → 重き

4日下

Eisenstein obstruction for non-cuspidal types

Key facts:

- **•** For non-cuspidal $[x, y]_F$, $[x, y]_F = -[e, f]_F + [f, \sigma f]_F$.
- $[\Lambda_i: \Lambda'_i] = 1$ if and only if $\pi_i([\mathbf{e}, f]_\Gamma) \in \Lambda'_i$.

Proof.

Suppose $t_F = 1$. Then $[x, y]_F$ is not cuspidal, and

$$
\pi_i([x,y]_\Gamma)=\pi_i([f,\gamma f]_\Gamma)-\pi_i([e,f]_\Gamma), \quad \text{for some } \gamma \in \Gamma.
$$

Since $[f, \gamma f]_{\Gamma}$ is cuspidal, we have $\pi_i([f, \gamma f]_{\Gamma}) \in \Lambda'_i$. If $[\Lambda_i: \Lambda'_i] \neq 1$, then $\pi_i([\mathbf{e}, f]) \notin \Lambda'_i$, and so

$$
\pi_i([x,y]_\Gamma)=\pi_i([f,\gamma f]_\Gamma)-\pi_i([e,f]_\Gamma)\neq 0.
$$

 Ω

 $A\equiv\mathbb{R}\cup\{1,2\}\cup\{1,3\}$

← ロ ▶ → 伊

Congruence of forms

Corollary

If $p \neq 2$ *divides the index* $[\Lambda_i : \Lambda'_i]$, then there is a newform of *level N and weight* 2 *whose Hecke eigenvalue a*^ℓ *is congruent modulo p to* $ℓ + 1$ *for all* $ℓ$ *not dividing N. Such a prime p divides N* − 1*.*

$$
N = 11, p = 5, a_{\ell};
$$
 $N = 23, p = 11, b_{\ell}, \beta = \frac{1}{2}(1 + \sqrt{5})$

For these prime levels $N < 10,000$, we observe from our data that

• the product of the indices divides *N* − 1, i.e.,

$$
\prod_{i=1}^k [\Lambda_i: \Lambda'_i] \mid (N-1);
$$

• the quotient

$$
Q = \frac{(N-1)}{\prod_i [\Lambda_i : \Lambda'_i]}
$$

is a positive power of 2 times a nonnegative power of 3;

→ 重き → 重き

 \leftarrow

Table: Lattice indices and the quotient $Q = (N - 1)/[\Lambda_1 : \Lambda'_1]$. Obstruction prevents type (0, 1).

Table: Lattice indices, and the quotient $Q = (N-1)/\prod_{i=1}^{2} [\Lambda_i : \Lambda'_i]$. Two obstructions for $N = 71$.

← ロ ▶ → 伊

Table: Lattice indices, and the quotient $Q = (N-1)/\prod_{i=1}^{3} [\Lambda_i : \Lambda'_i]$. $dim(V_1) = 1$

 2990

÷.

Dan Yasaki joint work with Avner Ash [Random Modular Symbols](#page-0-0) 46/56

80RD 290

80RD

Other directions

- \bullet Bianchi modular symbol (GL₂ over imaginary quadratic fields)
- Steinberg homology and group cohomology
- Higher rank modular symbols $(GL_3(\mathbb{Z}))$
- Sharbly complex $(GL_2$ over CM quartic fields, GL_3 over imaginary quadratic fields)
- Difficulties: analogue of unimodular symbols, reduction algorithm, computationally expensive

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right\} \times \left\{ \bigoplus_{i=1}^{n} x_i \right\}$

 $2Q$

Theorem (Ash-Rudolph, 1979)

- **1** As abelian group, St $(\mathbb{Q}^3; \mathbb{Z})$ is generated by $[v_1, v_2, v_3]$ as v_1 , v_2 , v_3 *range over all elements of* \mathbb{Q}^3 .
- ² *The following relations hold:*

•
$$
[v_1, v_2, v_3] = 0
$$
 if v_1, v_2, v_3 do not span \mathbb{Q}^3 .

$$
[v_1, v_2, v_3] = [kv_1, v_2, v_3]
$$
 for any nonzero $k \in \mathbb{Q}$;

$$
\begin{array}{ll} \text{\textbf{0}} & [v_1, v_2, v_3] = (-1)^s [v_{s(1)}, v_{s(2)}, v_{s(3)}] \text{ for any permutation} \\ & s \in S_n; \end{array}
$$

$$
\begin{array}{ll}\n\mathbf{O} & [v_1, v_2, v_3] = [x, v_2, v_3] + [v_1, x, v_3] + [v_1, v_2, x] \text{ for any nonzero } x \in \mathbb{Q}^n.\n\end{array}
$$

We call the fourth relation "passing through *x*".

ミメス(ミメ

 Ω

[van Geemen-van der Kallen-Top-Verberkmoes 1997]

Let $A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$, det $(A) > 1$. There is $m > 1$ and a nonzero vector in the kernel of *A* modulo *m*, so there exists $a_1, a_2, a_3 \in \mathbb{Z}$ such that

$$
\begin{aligned}\n\bullet \; x &= \frac{1}{m}(a_1v_1 + a_2v_2 + a_3v_3) \in \mathbb{Z}^3 \\
\bullet \; |a_i| &\leq m/2\n\end{aligned}
$$

Passing through *x* shrinks the determinant by a factor of at least 1/2.

イロメ 不優 トメ ヨ メ ス ヨ メー

The computations are much more expensive, and it looks like we need to go far to see different phenomena.

ORO

Dan Yasaki joint work with Avner Ash [Random Modular Symbols](#page-0-0) 53/56

80RO

(ロ) (伊)

不重 的不重

ORO

 290

ŧ

Prevalence of Each Type for N = 23

(ロ) (伊)

K 글 > K 글 >

ORO

 290

ŧ

Thank you.

Dan Yasaki joint work with Avner Ash [Random Modular Symbols](#page-0-0) 56/56

(ロ) (伊)