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DAN YASAKI

Abstract. Informal notes for a talk at UNCG on reciprocity laws (such as quadratic
reciprocity and Shimura-Taniyama). This material is from Fearless Symmetry by Ash and
Gross [1] and Galois Representations and Modular Forms by Ribet [2].

1. Overview

During the last few decades, the field of number theory has been increasingly permeated
by the theory of automorphic forms and automorphic representations. This collection of
conjectures is often called Langlands program, though it involves the work of many mathe-
maticians. Parts of this program can be viewed as vast generalization of the reciprocity laws
in number theory, such as quadratic reciprocity and Artin reciprocity.

The term reciprocity seems to go back to Legendre. Originally, the term referred to
reciprocity between two primes p and q: whether or not p was a square modulo q being
determined according to a simple rule depending on whether or not q was a square modulo
p. Quadratic reciprocity, proved by Gauss, is commonly the celebrated result at the end of
a course in Elementary Number Theory.

The Shimura-Taniyama conjecture, now known as the modularity theorem (semi-stable
case due to Wiles in 1995 and finished off by Breuil, Conrad, Diamond, and Taylor in 2001)
relates elliptic curves over Q to weight two modular forms that are eigen with respect to the
action of the Hecke algebra.

We will see that both quadratic reciprocity and the modularity theorem can be interpreted
as reciprocity laws. To this end, we need the Galois group.

The absolute Galois group G is the automorphism group of the field of algebraic numbers.
This is an extremely complicated group. . . extremely complicated. Some say that the goal of
modern number theory is to understand G.

SinceG is complicated, we turn instead to trying to understand the (linear) representations
of G. These are group homomorphisms from G to the automorphism group of a vector space.
This is still complicated, so we content ourselves to understanding the trace of such maps
evaluated on Frobenius elements. Specifically, let ρ : G→ GL(V ) be a Galois representation.
We wish to understand the sequence χρ(Frobp), where χρ is the composition of ρ with trace,
and p ranges over all but finitely many primes. A reciprocity law is a “black box” which
produces these values in some other way.

2. The absolute Galois group

Let Q be the field of algebraic numbers, the algebraic closure of Q.
Some examples and non-examples:

(1)
√
5, 3
√
7−
√
5, and i are in Q.
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(2) π is not in Q
(3) While Q contains all numbers that can be obtained from the integers using multi-

plication, division, addition, subtraction, and nth root, not every algebraic number
can be expressed in this way. (Abel’s proof of the insolvability of general quintic
polynomials.)

Let G = Gal(Q/Q) denote the absolute Galois group of Q, the group of automorphisms
of Q. In particular, for all g ∈ G and a, b ∈ Q, we have

g(a+ b) = g(a) + g(b) and g(ab) = g(a)g(b).

Note that for g ∈ G,
(1) g(t) = t for all t ∈ Q,
(2) if α is a root of a Z-polynomial f , then g(α) is also a root of f .
The absolute Galois group is a very natural group to consider, but it is extremely com-

plicated. There are only two elements of G which we can completely describe—the identity
element e and complex conjugation τ .

Note that the Galois group of a Z-polynomial f (or its splitting field F ) is related to the
absolute Galois group by the restriction morphism

rF : G→ Gal(F/Q).

Namely, since g ∈ G permutes the roots of f , it acts on F . Moreover, every automorphism
of F can be realized in this way.

3. Frobenius

As mentioned above, we only really have a handle on two elements of the absolute Galois
group. We want more. To this end, we consider the Frobenius elements.

First, Frob∞ is complex conjugation τ . For the others, fix a prime p. Here the situation
is more delicate. First, we define a set F(p), a union of conjugacy classes of elements in the
absolute Galois group G. Let Frobp refer to any element of F(p).

Because there is choice involved, we must be careful when we talk about Frobp and only
discuss characteristics that do not depend on the choice. What sort of things can we describe?
Let ρ : G→ GLn(R) be a Galois representation. Let χρ : G→ R be the trace

χρ(g) = Tr(ρ(g)).

Then outside of a finite set of bad primes S = Sρ, χρ(Frobp) is well-defined.
Here is a working definition of Frobp. Namely, we describe Frobp(α) when p is unramified

with respect to α.
First, note that the action of Frobp on Q is determined by its action of Z. Suppose α ∈ Z.

Then α satisfies a monic polynomial f . The Frobp(α) is a root of f . Furthermore, the norm
N(Frobp(α) − αp) is divisible by p. If there is only one root β of f such that N(β − αp) is
divisible by p, then Frobp(α) is β. It is possible that β is equal to α itself. When there is
more than one β, the definition is a bit more subtle.

Example 3.1. Let’s compute Frobp(i). First, 2 is ramified with respect to i, so 2 is a bad
prime. Thus we do not compute Frob2(i). It turns out that 2 is the only ramified prime
with respect to i. Note that i satisfies x2 + 1 = 0, so for p > 2, Frobp(i) is either i or −i.
We compute

N(i− i3) = N(2i) = 4 and N(−i− i3) = N(0) = 0.
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It follows that Frob3(i) = −i. A similar computation shows Frob5(i) = i. More generally,
for an odd prime p, we have

Frobp(i) =

{
i if p ≡ 1 mod 4,
−i if p ≡ 3 mod 4.

Since the various Frobenius elements are elements of the absolute Galois group, they act
on other algebraic numbers as well. Let’s compute Frobp(

√
2). As above, 2 is a bad prime.

Since
√
2 satisfies x2 − 2 = 0, we have Frobp(

√
2) is

√
2 or −

√
2. We compute

N(
√
2− (

√
2)3) = N(−

√
2) = −2 and N(−

√
2− (

√
2)3) = N(−3

√
2) = −18.

It follows that Frob3(
√
2) = −

√
2. A similar computations shows that Frob5(

√
2) = −

√
2,

Frob7(
√
2) =

√
2. More generally,

Frobp(
√
2) =

{ √
2 if p ≡ 1 or 7 mod 8,

−
√
2 if p ≡ 3 or 5 mod 8.

4. Galois representation attached to the variety x2 −W

Fix a non-zero square-free integerW . Let E be the variety defined by x2−W . The complex
points of this variety E(C) consists of two points, which we denote

√
W and−

√
W . Note that

these points live in Q. In particular, the absolute Galois group G acts by permuting these
roots so that for σ ∈ G, we have σ(

√
W ) = ±

√
W . This gives rise to a map ρW : G→ {±1}

defined by

σ(
√
W ) = ρW (σ)

√
W.

Note that ρW is a representation G→ GL1(C).
In the general mantra, we wish to understand χρW (Frobp) for good primes p. By relating

the cycle type of ρW (Frobp) to how the polynomial x2 − W factors, we get the following
result.

Theorem 4.1. W , p as above. Then

χρW (Frobp) = ρW (Frobp) =

(
W

p

)
,

where
(
W
p

)
is the Legendre symbol defined by(

W

p

)
= #E(Fp)− 1.

Note that on one hand, we are done. Our goal was to produce a “black box” attached
to the Galois representation which produces the sequence of traces of Frobenius elements.
Specifically, for the Galois representation attached to the variety E defined by x2 −W , the
“black box” is a normalized point count of E(Fp).
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5. Reciprocity

In this section, we produce another “black box” to compute χρW (Frobp), where ρW is the
Galois representation defined above. This is a reciprocity law which can be used to prove
the traditional statement of quadratic reciprocity.

Theorem 5.1 (Quadratic Reciprocity). Let p and q be odd primes. Then(
−1
p

)
=

{
1 if p ≡ 1 mod 4,
−1 if p ≡ 3 mod 4.(

2

p

)
=

{
1 if p ≡ 1 or 7 mod 8,
−1 if p ≡ 3 or 5 mod 8.(

p

q

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

Let N be an integer greater than 1. Let FN denote the set of functions from (Z/NZ)×
to C×. A simultaneous eigenfunction in FN is a function f ∈ FN such that for each p - N ,
there is a complex number ap with

f(p−1x) = apf(x) for all x ∈ (Z/NZ)×.

Theorem 5.2 (Weak Reciprocity). Given a square-free integer W , there exists a positive
integer N and a simultaneous eigenfunction f ∈ FN with eigenvalues a2, a3, . . . such that

χρW (Frobp) = ap

for every prime p - N .

Theorem 5.3 (Strong Reciprocity). N = 4|W | works in the Theorem above.

Let’s see what these results give us. For an eigenfunction f (normalized so that f(1) = 1),
and an odd prime p, taking x = p, we see that

f(1) = 1 = apf(p).

More generally, taking x = py, we get

f(y) = apf(py)

so that
f(p)f(y) = f(py).

Applying this result to all prime divisors of x, we see that f defines a group homomorphism
(Z/NZ)× → C×. Furthermore, for p - W , we have ap =

(
W
p

)
∈ {±1}. This allows us to see

precisely what this eigenfunction is. Namely,

f(p) =
1

ap
= ap =

(
W

p

)
.

Note that f is a function on (Z/NZ)×. Now Strong Reciprocity says that we can take
N = 4|W |. This implies that

(
W
p

)
only depends on p mod 4|W |. This explains the first two

equations in the traditional statement of Quadratic Reciprocity.
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How does this give the last statement? Suppose p ≡ q mod 4. Then let W = (p− q)/4 so
that p = 4W + q. Then we compute(

p

q

)
=

(
4W + q

q

)
=

(
4W

q

)
=

(
W

q

)
=

(
W

p

)
=

(
4W

p

)
=

(
p− q
p

)
=

(
−q
p

)
=

(
−1
p

)(
q

p

)
.

Now we consider the other case. First note that for any W , f(p) = 1 for any prime p
dividing 4W − 1. It follows that

f(4W − 1) = f(−1) = 1.

Suppose p+ q ≡ 0 mod 4. Let W = (p+ q)/4 so that q = 4W − p. We compute(
W

q

)
= f(q) = f(4W − p) = f(−p) = f(−1)f(p) = f(p) =

(
W

p

)
.

Then (
W

p

)
=

(
4W

p

)
=

(
p+ q

p

)
=

(
q

p

)
=

(
W

q

)
=

(
4W

q

)
=

(
p+ q

q

)
=

(
p

q

)

as desired.

6. Galois representation attached to elliptic curves

Let E be an elliptic curve over Q with integer coefficients

y2 = x3 + Ax+B,

where A and B are integers such that the discriminant −16(4A3 + 27B2) 6= 0. We view E
as a variety. For a field R, the points E ′(R) = E(R) ∪ {O} form a group.

Let n be a positive integer. An element P ∈ E(C) is an n-torsion point if
n times︷ ︸︸ ︷

P + P + · · ·+ P = O.
The n-torsion points of E are denoted E[n].

Theorem 6.1. Let E be an elliptic curve, and let n be a positive integer. All of the n-torsion
points of E have coordinates in Q, and the number of elements in E(Q) that are n-torsion
is n2.

This theorem implies that G acts on E[n]. Note that E ′(C) is the complex torus C/L,
where L is the lattice of periods associated to the cubic equation. Then E[n] may be modeled
as 1

n
L/L. Thus E[n] is a free module of rank 2 over Z/nZ.

For σ ∈ G and P,Q ∈ E[n], we have

σ(P +Q) = σ(P ) + σ(Q).

It follows that we have a continuous homomorphism

ρE,n : G→ Aut(E[n]).
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By choosing a basis for E[n], we identify Aut(E[n]) with GL2(Z/nZ).
The kernel of ρE,n defines a finite Galois extension K/Q which is the field obtained by

adjoining to Q the coordinates of the various points in E[n]. The Galois group Gn =
Gal(Kn/Q) is the image of ρE,n.

It is natural to ask for a description of Gn. When E has complex multiplication over C,
then Gn is much smaller than GLn(Z/nZ). Recall that E has complex multiplication when
there is a complex number α 6∈ Z such that αL ⊆ L. In the more common case where E
does not have complex multiplication, Serre shows that the index of Gn in GL2(Z/nZ) is
bounded as a function of n. It follows that Gp = GL2(Fp) for all but finitely many primes p.

The number field Kn depends on E and n. The discriminant of Kn is divisible only by
those primes which divide n or the conductor of E. In other words, if p - n is a prime which
does not divide the discriminant of E, then Kn/Q is unramified at p. In this case, Frobp
defines a conjugacy class in Gn. In particular, χρE,n

(Frobp) is well-defined for these primes.

Theorem 6.2. E, n, p, as above. Then

χρE,n
(Frobp) ≡ bp mod n,

where bp = p+ 1−#E ′(Fp).

Note that this means ρE,n encapsulates information about bp for all primes of good reduc-
tion which are prime to n. This is a striking result since ρE,n depends on n, and bp does
not depend on n. For fixed E, the representations ρE,n form a compatible family of Galois
representations because they have the “same” traces on Frobenius elements. This is a general
fact about étale cohomology.

Notice that bp is determined by looking at how often x3 + Ax + B is a square modulo p.
This has the same feel as looking at quadratic residues. In other words, the number of times
x3 + Ax+B is a square modulo p is related to the n-torsion in E ′(C).

7. The Shimura-Taniyama conjecture

Suppose f ∈ S2(N) is a weight 2 cusp form of level N . Then

f(z) =
∞∑
n=1

anq
n, where q = e2πiz.

Further suppose f is a normalized (a1 = 1) eigenform for the action of the Hecke algebra.
Then the coefficients an are algebraic integers. Furthermore, the Fourier coefficients of f
coincide with its Hecke eigenvalues

f |Tn = anf for all n ≥ 1.

Let Kf be the field generated by the Fourier coefficients of f . Then Shimura associates
to f an abelian variety Af over Q whose dimension on the degree [Kf ,Q]. If f has integer
coefficients, then Kf = Q and so Af is 1-dimensional. This means that Af is an elliptic
curve Ef . According to a theorem of Eichler and Shimura, the eigenvalues ap are reflected
in the arithmetic of Ef in the following way. If p - N , then Ef has good reduction at p. For
such a p, we have that ap coincides with

bp = p+ 1−#E ′f (Fp).

In other words, ap = bp for p - N .
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The Shimura-Taniyama conjecture asserts there is an analogous relationship for all elliptic
curves. Namely, every elliptic curve E over Q is modular in the sense that E is isogenous to
an elliptic curve Ef for some f ∈ S2(N). In other words, the Shimura-Taniyama conjecture
asserts the surjectivity of the construction f 7→ Af , viewed as a map from eigenforms with
integral coefficients to isogeny classes of elliptic curves over Q of conductor N is surjective.

8. Galois representation attached to modular forms

Suppose f ∈ S2(N) is a normalized eigenform. Let Ef denote the associated elliptic
curve. Then we have the construction described in Section 6 for producing a family of
Galois representations ρEf ,n. These representations are related to f by congruences.

Theorem 8.1. f , N as above. Then

χρEf ,n
(Frobp) ≡ ap mod n

for all p - nN .

We are most interested in the case where n is a prime number `.
It is tempting to write ρf,`. We cannot quite do that, however, since Ef is determined

up to isogeny. If one replaces Ef by an isogenous curve, the representations may change.
To fix this, we introduce semisimplifications of the ρEf ,`. This can really be viewed as
a fine tuning procedure which, for a fixed elliptic curve E, only affects a small num-
ber of representations. Specifically, Mazur shows that ρE,` is irreducible for all ` not in
{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}. The semisimplification of an irreducible represen-
tation ρ is ρ itself. Otherwise ρ is “upper-triangular”, and extension of a 1-dimensional
representation α by another β. Then the semisimplification is the direct sum α⊕ β.
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