
NOTES AND QUESTIONS FOR PERFECT PAIRINGS
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Abstract. Notes and questions about perfect pairings. This arose in the context of a
summer reading course from Stein’s [1].

Let R be field, and let M , N , and L be vector spaces over R. (We will usually consider
R = Q, R, C, or Fp. Our vector spaces will usually be finite-dimensional.) Many of the
things below are true even when R is a ring in the context of R-modules.

Exercise 1. HomR(M,R) is the space of linear functionals on M . It is often denoted M∗,
and called the dual space of M . More generally, let HomR(M,N) denote the set of R-linear
maps from M to N . Prove HomR(M,N) is a vector space. Assume that M and N are finite
dimensional. Compute the dimension of HomR(M,N).

Definition 1. A R-bilinear map 〈·, ·〉 : M ×N → L is called a pairing.

Exercise 2. A good example to keep in mind is the pairing between M∗ and M . Specifically,
define 〈·, ·〉 : M∗ ×M → R by 〈f,m〉 = f(m). Prove that this is in fact a pairing.

Exercise 3. Suppose 〈·, ·〉 : M ×N → L is a pairing. We can view 〈·, ·〉 as a R-linear map
Φ1 : M → HomR(N,L). We can also view 〈·, ·〉 as a R-linear map Φ2 : N → HomR(M,L).
Explain. (Hint for Φ1: Given m ∈ M , what is the most natural way to get a map from N
to L using what is given?)

Definition 2. A pairing is non-degenerate if whenever 〈m,n〉 = 0 for all n ∈ N , then m = 0.

Exercise 4. Explain non-degeneracy in terms of Φ1 or Φ2.

Definition 3. A pairing is perfect if Φ1 is an isomorphism.

Exercise 5. If 〈·, ·〉 is a perfect pairing of finite-dimensional vectors spaces, is Φ2 is an
isomorphism?

Exercise 6. Is every perfect pairing non-degenerate? Explain.

Exercise 7. Let 〈·, ·〉 be the usual inner product on Rn. Prove that 〈·, ·〉 is a non-degenerate,
perfect pairing.

Exercise 8. For each pair of vectors u and v in R2, define 〈u, v〉 to be the determinant of
the matrix with columns u and v. Prove 〈·, ·〉 is a pairing. Is it nondegenerate? Is it perfect?

Exercise 9. For each A ∈ Matn(R) and each v ∈ Rn, define 〈A, v〉 = Av. Is this a pairing?
Is it nondegenerate? Is it perfect?

Exercise 10. For each f, g ∈ C∞(R), define

〈f, g〉 =

∫ 1

0

f(x)g(x) dx.

Is this a pairing?
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Exercise 11. For each f ∈ C∞(R) and each closed interval [a, b] ⊂ R, define

〈f, [a, b]〉 =

∫ b

a

f(x) dx.

Is this a pairing? Before answering that, think carefully about what you would need to show.
What is M , N , and L in this case?
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