
SOME NOTES FOR SUMMER READING ON MODULAR FORMS

DAN YASAKI

1. Notation

h = complex upper half-plane
G = SL2(R)

K = SO(2)

C = cone of positive definite symmetric matrices

Γ0(N) =

{[
a b
c d

]
: c ∈ NZ

}
P1(Q) = Q ∪ {∞} = cusps in h

Mk(Γ0(N)) = weight k modular forms for Γ0(N)

Sk(Γ0(N)) = weight k cusp forms for Γ0(N)

M2 = space of modular symbols
M2(Γ0(N)) = Γ0(N)\M2

= space of modular symbols for Γ0(N)

2. Actions

1. For g =

[
a b
c d

]
∈ SL2(R) and z ∈ h∗,

g · z =

{
az+b
cz+d

if z 6=∞
a
c

if z =∞
.

Note that if we extend the actions above to an action of GL+
2 (R), scalar matrices act

trivially on h.

2. For g =

[
a b
c d

]
∈ GL2(R) and Q ∈ C̄,

g ·Q = gQgt.

Note that scalar matrices act by homothety (positive scaling) on C̄. In particular,
scalar matrices act trivially on C̄/R>0.

3. For g =

[
a b
c d

]
∈ GL2(Q) and f ∈Mk(Γ0(N)),

f [g]k(z) = det(g)k−1(cz + d)−kf(γ · z).

NOTE: This is a right-action.
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4. For g ∈ GL2(Z) and v ∈ Z2,

g · q(v) = q(gv).

WARNING: While the action above is fine when we mod out by homothety and look
in C/R>0, many computations we do will be purely in terms of v. In that case, always

make sure that you scale
[
a
b

]
by 1/ gcd(a, b) to ensure that v and gv are primitive.

5. For g ∈ Γ0(N) and (c : d) ∈ P1(Z/NZ),

(c : d) · g = line in (Z/NZ)2 through
[
c d

]
g.

Note this is a right action.

3. Voronoi polyhedron

Define a map q : Z2 → C̄ by q(v) = vvt. The Voronoi polyhedron is the infinite polyhedron
Π gotten by taking the convex hull

Π = Convex{q(v) : v ∈ Z2 \ 0}.

The vertices of Π are the cusps of C and are in bijection with the cusps of h.

4. Identifications

h ' C/R>0 via z = g · i→ R>0 · ggt

and g · i← R>0 · ggt = R ·Q

P1(Q) ' cusps of C via
a

b
(as a reduced fraction)→ q(

[
a
b

]
),

∞→ q(

[
1
0

]
)

P1(Z/NZ) ' Γ0(N)\ SL2(Z) via (0 : 1) · g → Γ0(N)g

and (c : d)→ Γ0(N)

[
a b
c d

]

Projection onto trace 1 slice. Image under identification with h.
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5. Modular symbols

In this section, I will try to be more explicit about the different ways we look at modular
symbols. In this section, let u0 denote the modular symbol {0,∞}.

Our goal is to compute the action of Hecke operators Tp with p prime on M2(Γ0(N)).
Then the general theory will tell us that we can recover the action of Hecke operators on
modular forms.

The general plan of attack is the following:
1. Lift an element of u ∈ M2(Γ0(N)) to an element of ũ ∈ M2, expressed as a linear

combination of Manin generators.
2. Compute the Hecke action on ũ. In general, this is no longer a linear combination of

Manin generators.
3. Use reduction algorithm (see Homework 4 and Proposition 3.11 (continued fractions)

of the textbook) to express in terms of Manin generators.
4. Push down to M2(Γ0(N)).
Homework 4 deals with 2 and 3, and it should be reviewed for more details.
Manin shows that M2(Γ0(N)) is generated by {r · u0}, where r ranges over coset repre-

sentatives of Γ0(N)\ SL2(Z). Call this the Manin generators or Manin symbols for Γ0(N).
Note that we may have nontrivial linear relations among the r · u0s. In particular, {r · u0}
is a spanning set, but may not be linearly independent. By the identifications above, we see
that the Manin generators are in bijection with the points in P1(Z/NZ). Indeed if we set
M = ModularSymbols(N,2) and compute M.manin_generators(), you should get the ele-
ments of P1(Z/NZ), which should match what you get if you list the elements of P1List(N).

How far off from P1(Z/NZ) is M2(Γ0(N))? Manin’s result Theorem 3.13 of the text gives
the answer, but I will try to explain a different way of computing it, so that we can generalize
later in the semester.

Let U ⊂ M2 denote the set of unimodular symbols. These are precisely the {α, β} with
“determinant” = ±1. They correspond to the edges of the Voronoi polyhedron, or equiva-
lently, the edges of the hyperbolic triangulation shown in the Figure above. Note that one
of the consequences of Proposition 3.11 is that U = SL2(Z) · u0, and we want to compute
M2(Γ0(N)). This is essentially Γ0(N)\U modulo some extra relations.

Let G0 be the stabilizer of u0 up to sign. In other words,

G0 = {g ∈ SL2(Z) : g · u0 = ±u0}.

Then since SL2(Z) acts transitively on U , we have that

U ' SL2(Z)/G0.

Note that we want to compute the space M2(Γ0(N)) = Γ0(N)\U . Therefore we want to
compute

one-cells = Γ0(N)\U
= Γ0(N)\ SL2(Z)/G0

= P1(Z/NZ)/G0.

In other words, the elements of M2(Γ0(N)) correspond to right G0 orbits in P1(Z/NZ). See
Homework 5.
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All that remains is to mod out by the relation
{α, β}+ {β, γ} = {α, γ}.

This is essentially the homology relation that goes around the boundary of an ideal triangle.
In this context, it suffices to mod out by

r · {0, 1}+ r · {1,∞}+ r · {∞, 0}.
Translate this relation in terms of projective orbits in Homework 5.

This shows the general plan of attack for computing Hecke operators:
1. Compute P1(Z/NZ)/G0 modulo triangle relations. This should be the same as the

output from ModularSymbols(N,2) in SAGE.
2. Lift a basis of 1. to elements of M2.
3. Compute the Hecke operators on the basis computed in 2.
4. Reduce 3. to get expression in U .
5. Express 4. in terms of projective orbits.
6. Mod out by triangle relations.

Homework 4 deals with 3. and 4. Homework 5 deals with 5. and 6.
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