HOMEWORK 1

DAN YASAKI

1. Read Gunnells Modular forms TWIGS.
http://www.math.umass.edu/~ gunnells/talks/modforms.pdf
2. Read Chapter 1 of textbook.
3. $\S 1.6$ (1.1) Note that this shows the action of $\mathrm{GL}_{2}(\mathbb{R})$ preserves the complex upper halfplane.
Solution: Let $z=x+i y \in \mathbb{C}$ with $y>0$, and let $a, b, c, d \in \mathbb{R}$ with $a d-b c>0$. We want to show that

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right)>0 .
$$

Multiply the numerator and denominator by $\overline{c z+d}=c \bar{z}+d$ to get

$$
\begin{aligned}
\left(\frac{a z+b}{c z+d}\right) & =\left(\frac{a z+b}{c z+d}\right)\left(\frac{c \bar{z}+d}{\overline{c z+d}}\right) \\
& =\frac{a c|z|^{2}+b c \bar{z}+a d z+b d}{|c z+d|^{2}} \\
& =\frac{a c|z|^{2}+b c x-b c i y+a d x+a d i y+b d}{|c z+d|^{2}} .
\end{aligned}
$$

The imaginary part is $\frac{(a d-b c) y}{|c z+d|^{2}}$, which is greater than 0 as desired.
4. §1.6 (1.3)

Solution: Recall a weakly modular function is a meromorphic function such that for all $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma$,

$$
f(\gamma \cdot z)=(c z+d)^{k} f(z)
$$

(a) Suppose f and g are weakly modular functions of weight k_{1} and k_{2}, respectively. We want to show the product $h=f g$ is a weakly modular function. The product of meromorphic functions is meromorphic, so it suffices to show that h satisfies the correct equivariance properties. We compute

$$
\begin{aligned}
h(\gamma \cdot z) & =f(\gamma \cdot z) g(\gamma \cdot z) \\
& =(c z+d)^{k_{1}} f(z)(c z+d)^{k_{2}} g(z) \\
& =(c z+d)^{k_{1}+k_{2}} f(z) g(z) \\
& =(c z+d)^{k_{1}+k_{2}} h(z) .
\end{aligned}
$$

(b) Suppose f is a weakly modular function of weight k. We want to show that $1 / f$ is a weakly modular function. The reciprocal of a meromorphic function is meromorphic, so it suffices to show that $h=1 / f$ satisfies the correct equivariance
properties. We compute

$$
\begin{aligned}
h(\gamma \cdot z) & =\frac{1}{f(\gamma \cdot z)} \\
& =\frac{1}{(c z+d)^{k} f(z)} \\
& =(c z+d)^{-k} \frac{1}{f(z)} \\
& =(c z+d)^{-k} h(z) .
\end{aligned}
$$

(c) Suppose f and g are modular functions. We want to show that $f g$ is a modular function. Recall that a modular funciton is a weakly modular function that is meromorphic at infinity. Above we show that the product of weakly modular functions is weakly modular, so it suffices to show that $h=f g$ is meromorphic at infinity, assuming f and g are meromorphic at infinity. This can be shown by multiplying the respective q expansions. Specifically, let

$$
f(z)=\sum_{n \geq m_{1}}^{\infty} a_{n} q^{n} \quad \text { and } \quad g(z)=\sum_{n \geq m_{2}}^{\infty} b_{n} q^{n} .
$$

Then the q-expansion of h is

$$
\begin{aligned}
h(z) & =\left(\sum_{n \geq m_{1}}^{\infty} a_{n} q^{n}\right)\left(\sum_{n \geq m_{2}}^{\infty} b_{n} q^{n}\right) \\
& =a_{m_{1}} b_{m_{2}} q^{m_{1}+m_{2}}+\cdots
\end{aligned}
$$

Since $m_{1}+m_{2} \in \mathbb{Z}$, it follows that h is meromorphic at infinity.
(d) Suppose f and g are modular forms. We want to show that $h=f g$ is a modular form. Recall that a modular form is a modular function that is homolorphic on \mathfrak{h} and holomorphic at infinity. We show above that the product of modular functions is a modular function. The product of holomorphic functions is holomorphic. Thus it suffices to show that h is holomorphic at infinity assuming f and g are holomorphic at infinity. As above, we just look at the q-expansions. Specifically, let

$$
f(z)=\sum_{n \geq 0}^{\infty} a_{n} q^{n} \quad \text { and } \quad g(z)=\sum_{n \geq 0}^{\infty} b_{n} q^{n} .
$$

Then the q-expansion of h is

$$
\begin{aligned}
h(z) & =\left(\sum_{n \geq 0}^{\infty} a_{n} q^{n}\right)\left(\sum_{n \geq 0}^{\infty} b_{n} q^{n}\right) \\
& =a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) q+\cdots
\end{aligned}
$$

Since $m_{1}+m_{2} \in \mathbb{Z}$, it follows that h is meromorphic at infinity.
5. §1.6 (1.4)

Solution: Recall

$$
\Gamma_{1}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}):\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right]\right\}
$$

(a) Let $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $h=\left[\begin{array}{ll}q & r \\ s & t\end{array}\right]$ be elements of $\Gamma_{1}(N)$. Then

$$
a \equiv d \equiv q \equiv t \equiv 1 \quad(\bmod N)
$$

and

$$
c \equiv s \equiv 0 \quad(\bmod N)
$$

It follows that

$$
g^{-1}=\left[\begin{array}{cc}
d & -b \\
-c a &
\end{array}\right] \in \Gamma_{1}(N)
$$

We compute

$$
g h=\left[\begin{array}{ll}
a q+b s & a r+b t \\
q c+d s & c r+d t
\end{array}\right]
$$

Since $c \equiv s \equiv 0(\bmod N)$, we have $q c+d s \equiv 0(\bmod N)$. Since $a \equiv q \equiv$ $1(\bmod N)$ and $s \equiv 0(\bmod N)$, we have $a q+b s \equiv 1(\bmod N)$. Similarly, we have $c r+d t \equiv 1(\bmod N)$. Thus $g h \in \Gamma_{1}(N)$, and $\Gamma_{1}(N)$ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$.
(b) We want to prove that $\Gamma_{1}(N)$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$, where

$$
\Gamma(N)=\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right)
$$

First note that $\Gamma(N) \subset \Gamma_{1}(N)$. It follows that

$$
\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right] \leq\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma(N)\right] \leq \# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})<\infty
$$

(c) We want to prove that $\Gamma_{0}(N)$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$. This follows because $\Gamma_{1}(N) \subset \Gamma_{0}(N)$, and we show above that $\Gamma_{1}(N)$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$.
(d) We want to prove that $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$ have level N. Recall that the level of a congruence subgroup is the smallest positive integer n such that the congruence subgroup contains $\Gamma(n)$. Let $t<N$. Then $g=\left[\begin{array}{ll}1 & 0 \\ t & 0\end{array}\right] \in \Gamma(t)$, and $g \notin \Gamma_{1}(N)$ and $g \notin \Gamma_{0}(N)$. It follows that the level of $\Gamma_{1}(N)$ and the level of $\Gamma_{0}(N)$ is greater than or equal to N. It is clear that $\Gamma(N) \subset \Gamma_{0}(N)$ and $\Gamma(N) \subset \Gamma_{0}(N)$, and so the level is less than or equal to N. It follows that the level is exactly N.
6 . $\S 1.6$ (1.7) Note that this shows that

$$
\left(f^{[\gamma]_{k}}\right)(z)=\operatorname{det}(\gamma)^{k-1}(c z+d)^{-k} f(\gamma(z))
$$

defines a right action of $\mathrm{GL}_{2}(\mathbb{R})$ on the set of functions $f: \mathfrak{h}^{*} \rightarrow \mathbb{C}$.
Solution: For $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, let j be the automorphy factor $j(\gamma, z)=(c z+d)$. Note that

$$
f^{[\gamma]_{k}}(z)=\operatorname{det}(\gamma)^{k-1} j(\gamma, z)^{-k} f(\gamma \cdot z)
$$

We want to show that

$$
f^{\left[\gamma_{1} \gamma_{2}\right]_{k}}(z)=\left(\left(f^{\left[\gamma_{1}\right]_{k}}\right)^{\left[\gamma_{2}\right]_{k}}\right)(z) .
$$

The left side is

$$
\operatorname{det}\left(\gamma_{1} \gamma_{2}\right)^{k-1} j\left(\gamma_{1} \gamma_{2}, z\right)^{-k} f\left(\left(\gamma_{1} \gamma_{2}\right) \cdot z\right)
$$

and the right side is

$$
\operatorname{det}\left(\gamma_{2}\right)^{k-1} \operatorname{det}\left(\gamma_{1}\right)^{k-1} j\left(\gamma_{1}, \gamma_{2} \cdot z\right)^{-k} j\left(\gamma_{2}, z\right)^{-k} f\left(\gamma_{1} \cdot\left(\gamma_{2} \cdot z\right)\right)
$$

Thus it suffices to show that
(a) $\left(\gamma_{1} \gamma_{2}\right) \cdot z=\gamma_{1} \cdot\left(\gamma_{2} \cdot z\right)$ and
(b) $j\left(\gamma_{1} \gamma_{2}, z\right)=j\left(\gamma_{1}, \gamma_{2} \cdot z\right) j\left(\gamma_{2}, z\right)$.

Consider the vector $\left[\begin{array}{l}z \\ 1\end{array}\right]$. Then one can relate the action of matrices on the upper half plane with the regular matrix multiplication on vectors by

$$
\gamma\left[\begin{array}{l}
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\gamma \cdot z \\
1
\end{array}\right] j(\gamma, z)
$$

It follows that

$$
\begin{align*}
\left(\gamma_{1} \gamma_{2}\right)\left[\begin{array}{l}
z \\
1
\end{array}\right] & =\gamma_{1}\left[\begin{array}{c}
\gamma_{2} \cdot z \\
1
\end{array}\right] j\left(\gamma_{2}, z\right) \tag{1}\\
& =\left[\begin{array}{c}
\gamma_{1} \cdot\left(\gamma_{2} \cdot z\right) \\
1
\end{array}\right] j\left(\gamma_{1}, \gamma_{2} \cdot z\right) j\left(\gamma_{2}, z\right) \tag{2}
\end{align*}
$$

On the other hand,

$$
\left(\gamma_{1} \gamma_{2}\right)\left[\begin{array}{l}
z \tag{3}\\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\gamma_{1} \gamma_{2}\right) \cdot z \\
1
\end{array}\right] j\left(\gamma_{1} \gamma_{2}, z\right)
$$

Setting (2) equal to (3) gives the desired result.
Dan Yasaki, Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA

E-mail address: d_yasaki@uncg.edu

