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The concept of integration is of course fundamental in single-variable calculus.
Actually, there are three concepts of integration which appear in the subject: the
indefinite integral

∫
f (also known as the anti-derivative), the unsigned definite

integral
∫
[a,b]

f(x) dx (which one would use to find area under a curve, or the mass
of a one-dimensional object of varying density), and the signed definite integral∫ b

a
f(x) dx (which one would use for instance to compute the work required to move

a particle from a to b). For simplicity we shall restrict attention here to functions
f : R → R which are continuous on the entire real line (and similarly, when we
come to differential forms, we shall only discuss forms which are continuous on the
entire domain). We shall also informally use terminology such as “infinitesimal” in
order to avoid having to discuss the (routine) “epsilon-delta” analytical issues that
one must resolve in order to make these integration concepts fully rigorous.

These three integration concepts are of course closely related to each other in single-
variable calculus; indeed, the fundamental theorem of calculus relates the signed
definite integral

∫ b

a
f(x) dx to any one of the indefinite integrals F =

∫
f by the

formula ∫ b

a

f(x) dx = F (b)− F (a) (1)

while the signed and unsigned integral are related by the simple identity∫ b

a

f(x) dx = −
∫ a

b

f(x) dx =
∫

[a,b]

f(x) dx (2)

which is valid whenever a ≤ b.

When one moves from single-variable calculus to several-variable calculus, though,
these three concepts begin to diverge significantly from each other. The indefinite
integral generalises to the notion of a solution to a differential equation, or of an
integral of a connection, vector field, or bundle. The unsigned definite integral
generalises to the Lebesgue integral, or more generally to integration on a measure
space. Finally, the signed definite integral generalises to the integration of forms,
which will be our focus here. While these three concepts still have some relation
to each other, they are not as interchangeable as they are in the single-variable
setting. The integration on forms concept is of fundamental importance in differ-
ential topology, geometry, and physics, and also yields one of the most important
examples of cohomology, namely de Rham cohomology, which (roughly speaking)
measures precisely the extent to which the fundamental theorem of calculus fails in
higher dimensions and on general manifolds.
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To motivate the concept, let us informally revisit one of the basic applications of
the signed definite integral from physics, namely to compute the amount of work
required to move a one-dimensional particle from point a to point b, in the presence
of an external field (e.g. one may move a charged particle in an electric field). At
the infinitesimal level, the amount of work required to move a particle from a point
xi ∈ R to a nearby point xi+1 ∈ R is (up to small errors) linearly proportional
to the displacement ∆xi := xi+1 − xi, with the constant of proportionality f(xi)
depending on the initial location xi of the particle1, thus the total work required
here is approximately f(xi)∆xi. Note that we do not require that xi+1 be to the
right of xi, thus the displacement ∆xi (or the infinitesimal work f(xi)∆xi) may
well be negative. To return to the non-infinitesimal problem of computing the
work

∫ b

a
f(x) dx required to move from a to b, we arbitrarily select a discrete path

x0 = a, x1, x2, . . . , xn = b from a to b, and approximate the work as∫ b

a

f(x) dx ≈
n−1∑
i=0

f(xi)∆xi. (3)

Again, we do not require xi+1 to be to the right of xi (nor do we require b to be
to the right of a); it is quite possible for the path to “backtrack” repeatedly, for
instance one might have xi < xi+1 > xi+2 for some i. However, it turns out in
the one-dimensional setting, with f : R → R assumed to be continuous, that the
effect of such backtracking eventually cancels itself out; regardless of what path we
choose, the right-hand side of (3) always converges to the left-hand side as long as
we assume that the maximum step size sup0≤i≤n−1 |∆xi| of the path converges to
zero, and the total length

∑n−1
i=0 |∆xi| of the path (which controls the amount of

backtracking involved) stays bounded. In particular, in the case when a = b, so
that all paths are closed (i.e. x0 = xn), we see that signed definite integral is zero:∫ a

a

f(x) dx = 0. (4)

In the language of forms, this is asserting that any one-dimensional form f(x)dx
on the real line R is automatically closed. (The fundamental theorem of calculus
then asserts that such forms are also automatically exact.) The concept of a closed
form corresponds to that of a conservative force in physics (and an exact form
corresponds to the concept of having a potential function).

From this informal definition of the signed definite integral it is obvious that we
have the concatenation formula∫ c

a

f(x) dx =
∫ b

a

f(x) dx +
∫ c

b

f(x) dx (5)

regardless of the relative position of the real numbers a, b, c. In particular (setting
a = c and using (4)) we conclude that∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

1In analogy with the Riemann integral, we could use f(x∗i ) here instead of f(xi), where x∗i is

some point intermediate between xi and xi+1. But as long as we assume f to be continuous, this

technical distinction will be irrelevant.
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Thus if we reverse a path from a to b to form a path from b to a, the sign of the
integral changes. This is in contrast to the unsigned definite integral

∫
[a,b]

f(x) dx,
since the set [a, b] of numbers between a and b is exactly the same as the set of
numbers between b and a. Thus we see that paths are not quite the same as sets;
they carry an orientation which can be reversed, whereas sets do not.

Now we move from one dimensional integration to higher-dimensional integration
(i.e. from single-variable calculus to several-variable calculus). It turns out that
there will be two dimensions which will be relevant: the dimension n of the ambient
space2 Rn, and the dimension k of the path, oriented surface, or oriented manifold
S that one will be integrating over.

Let us begin with the case n ≥ 1 and k = 1. Here, we will be integrating over a
continuously differentiable path (or oriented rectifiable curve3) γ in Rn starting at
some point a ∈ Rn and ending at point b ∈ Rn (which may or may not be equal to
a, depending on whether the path is closed or open); from a physical point of view,
we are still computing the work required to move from a to b, but are now moving
in several dimensions instead of one. In the one-dimensional case, we did not need
to specify exactly which path we used to get from a to b (because all backtracking
cancelled itself out); however, in higher dimensions, the exact choice of the path
γ becomes important. Formally, a path from a to b can be described (or more
precisely, parameterised) as a continuously differentiable function γ : [0, 1] → Rn

from the standard unit interval [0, 1] to Rn such that γ(0) = a and γ(1) = b. For
instance, the line segment from a to b can be parameterised as γ(t) := (1− t)a+ tb.
This segment also has many other parameterisations, e.g. γ̃(t) := (1− t2)a+ t2b; it
will turn out though (similarly to the one-dimensional case) that the exact choice
of parameterisation does not ultimately influence the integral. On the other hand,
the reverse line segment (−γ)(t) := ta + (1− t)b from b to a is a genuinely different
path; the integral on −γ will turn out to be the negative of the integral on γ.

As in the one-dimensional case, we will need to approximate the continuous path
γ by a discrete path

x0 = γ(0) = a, x1 = γ(t1), x2 = γ(t2), . . . , xn = γ(1) = b.

Again, we allow some backtracking: ti+1 is not necessarily larger than ti. The
displacement ∆xi := xi+1 − xi ∈ Rn from xi to xi+1 is now a vector rather than a
scalar. (Indeed, one should think of ∆xi as an infinitesimal tangent vector to the
ambient space Rn at the point xi.) In the one-dimensional case, we converted the
scalar displacement ∆xi into a new number f(xi)∆xi, which was linearly related
to the original displacement by a proportionality constant f(xi) depending on the
position xi. In higher dimensions, the analogue of a “proportionality constant” of

2We will start with integration on Euclidean spaces Rn for simplicity, although the true power

of the integration on forms concept is only apparent when we integrate on more general spaces,
such as abstract n-dimensional manifolds.

3Some authors distinguish between a path and an oriented curve by requiring that paths to
have a designated parameterisation γ : [0, 1] → Rn, whereas curves do not. This distinction will
be irrelevant for our discussion and so we shall use the terms interchangeably. It is possible to

integrate on more general curves (e.g. the (unrectifiable) Koch snowflake curve, which has infinite
length), but we do not discuss this in order to avoid some technicalities.
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a linear relationship is a linear transformation. Thus, for each xi we shall need
a linear transformation ωxi

: Rn → R that takes an (infinitesimal) displacement
∆xi ∈ Rn as input and returns an (infinitesimal) scalar ωxi

(∆xi) ∈ R as output,
representing the infinitesimal “work” required to move from xi to xi+1. (In other
words, ωxi

is a linear functional on the space of tangent vectors at xi, and is thus
a cotangent vector at xi.) In analogy to (3), the net work

∫
γ

ω required to move
from a to b along the path γ is approximated by∫

γ

ω ≈
n−1∑
i=0

ωxi
(∆xi). (6)

If ωxi
depends continuously on xi, then (as in the one-dimensional case) one

can show that the right-hand side of (6) is convergent if the maximum step size
sup0≤i≤n−1 |∆xi| of the path converges to zero, and the total length

∑n−1
i=0 |∆xi|

of the path stays bounded. The object ω, which continuously assigns4 a cotangent
vector to each point in Rn, is called a 1-form, and (6) leads to a recipe to integrate
any 1-form ω on a path γ (or, to shift the emphasis slightly, to integrate the path
γ against the 1-form ω). Indeed, it is useful to think of this integration as a binary
operation (similar in some ways to the dot product) which takes the curve γ and the
form ω as inputs, and returns a scalar

∫
γ

ω as output. There is in fact a “duality”
between curves and forms; compare for instance the identity∫

γ

(ω1 + ω2) =
∫

γ

ω1 +
∫

γ

ω2

(which expresses (part of) the fundamental fact that integration on forms is a linear
operation) with the identity ∫

γ1+γ2

ω =
∫

γ1

ω +
∫

γ2

ω

(which generalises (5)) whenever5 the initial point of γ2 is the final point of γ1,
where γ1 + γ2 is the concatenation of γ1 and γ2. This duality is best understood
using the abstract (and much more general) formalism of homology and cohomology.

Because Rn is a Euclidean vector space, it comes with a dot product (x, y) 7→ x · y,
which can be used to describe 1-forms in terms of vector fields (or equivalently,
to identify cotangent vectors and tangent vectors): specifically, for every 1-form
ω there is a unique vector field F : Rn → Rn such that ωx(v) := F (x) · v for all
x, v ∈ Rn. With this representation, the integral

∫
γ

ω is often written as
∫

γ
F (x)·dx.

However, we shall avoid this notation because it gives the misleading impression
that Euclidean structures such as the dot product are an essential aspect of the
integration on differential forms concept, which can lead to confusion when one
generalises this concept to more general manifolds on which the natural analogue
of the dot product (namely, a Riemannian metric) might be unavailable.

4More precisely, one can think of ω as a section of the cotangent bundle.
5One can remove the requirement that γ2 begins where γ1 leaves off by generalising the notion

of an integral to cover not just integration on paths, but also integration on formal sums or
differences of paths. This makes the duality between curves and forms more symmetric.
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Note that to any continuously differentiable function f : Rn → R one can assign a
1-form, namely the derivative df of f , defined as the unique 1-form such that one
has the Taylor approximation

f(x + v) ≈ f(x) + dfx(v)

for all infinitesimal v, or more rigorously that |f(x + v) − f(x) − dfx(v)|/|v| → 0
as v → 0. Using the Euclidean structure, one can express dfx = ∇f(x) · dx, where
∇f is the gradient of f ; but note that the derivative df can be defined without
any appeal to Euclidean structure. The fundamental theorem of calculus (1) now
generalises as ∫

γ

df = f(b)− f(a) (7)

whenever γ is any oriented curve from a point a to a point b. In particular, if γ is
closed, then

∫
γ

df = 0. A 1-form whose integral against every closed curve vanishes
is called closed, while a 1-form which can be written as df for some continuously
differentiable function is called exact. Thus the fundamental theorem asserts that
every exact form is closed. This turns out to be a general fact, valid for all manifolds.
Is the converse true (i.e. is every closed form exact)? If the domain is a Euclidean
space (or more any other simply connected manifold), then the answer is yes (this
is a special case of the Poincaré lemma), but it is not true for general domains;
in modern terminology, this demonstrates that the de Rham cohomology of such
domains can be non-trivial.

Now we turn to integration on k-dimensional sets with k > 1; for simplicity we dis-
cuss the two-dimensional case k = 2, i.e. integration of forms on (oriented) surfaces
in Rn, as this already illustrates many features of the general case. Physically, such
integrals arise when computing a flux of some field (e.g. a magnetic field) across a
surface; a more intuitive example6 would arise when computing the net amount of
force exerted by a wind blowing on a sail. We parameterised one-dimensional ori-
ented curves as continuously differentiable functions γ : [0, 1] → Rn on the standard
(oriented) unit interval [0, 1]; it is thus natural to parameterise two-dimensional
oriented surfaces as continuously differentiable functions φ : [0, 1]2 → Rn on the
standard (oriented) unit square [0, 1]2 (we will be vague here about what “oriented”
means). This will not quite cover all possible surfaces one wishes to integrate over,
but it turns out that one can cut up more general surfaces into pieces which can
be parameterised using “nice” domains such as [0, 1]2.

In the one-dimensional case, we cut up the oriented interval [0, 1] into infinitesimal
oriented intervals from ti to ti+1 = ti +∆t, thus leading to infinitesimal curves from
xi = γ(ti) to xi+1 = γ(ti+1)) = xi+∆xi. Note from Taylor expansion that ∆xi and
∆t are related by the approximation ∆xi ≈ γ′(ti)∆ti. In the two-dimensional case,
we will cut up the oriented unit square [0, 1]2 into infinitesimal oriented squares7, a

6Actually, this example is misleading for two reasons. Firstly, net force is a vector quantity
rather than a scalar quantity; secondly, the sail is an unoriented surface rather than an oriented
surface. A more accurate example would be the net amount of light falling on one side of a sail,
where any light falling on the opposite side counts negatively towards that net amount.

7One could also use infinitesimal oriented rectangles, parallelograms, triangles, etc.; this leads
to an equivalent concept of the integral.



6 TERENCE TAO

typical one of which may have corners (t1, t2), (t1+∆t, t2), (t1, t2+∆t), (t1+∆t, t2+
∆t). The surface described by φ can then be partitioned into (oriented) regions
with corners x := φ(t1, t2), φ(t1 + ∆t, t2), φ(t1, t2 + ∆t), φ(t1 + ∆t, t2 + ∆t). Using
Taylor expansion in several variables, we see that this region is approximately an
(oriented) parallelogram in Rn with corners x, x + ∆1x, x + ∆2x, x + ∆1x + ∆2x,
where ∆1x, ∆2x ∈ Rn are the infinitesimal vectors

∆1x :=
∂φ

∂t1
(t1, t2)∆t; ∆2x :=

∂φ

∂t2
(t1, t2)∆t.

Let us refer to this object as the infinitesimal parallelogram with dimensions ∆1x∧
∆2x with base point x; at this point, the symbol ∧ is a meaningless placeholder. In
order to integrate in a manner analogous with integration on curves, we now need
some sort of functional ωx at this base point which should take the above infini-
tesimal parallelogram and return an infinitesimal number ωx(∆1x ∧ ∆2x), which
physically should represent the amount of “flux” passing through this parallelo-
gram.

In the one-dimensional case, the map ∆x 7→ ωx(∆x) was required to be linear; or
in other words, we required the axioms

ωx(c∆x) = cωx(∆x); ωx(∆x + ∆̃x) = ωx(∆x) + ωx(∆̃x)

for any c ∈ R and ∆x, ∆̃x ∈ Rn. Note that these axioms are intuitively consistent
with the interpretation of ωx(∆x) as the total amount of work required or flux
experienced along the oriented interval from x to x+∆x. Similarly, we will require
that the map (∆1x,∆2x) 7→ ωx(∆1x ∧∆2x) be bilinear, thus we have the axioms

ωx(c∆x1 ∧∆x2) = cωx(∆x1 ∧∆x2)

ωx((∆x1 + ∆̃x1) ∧∆x2) = ωx(∆x1 ∧∆x2) + ωx(∆̃x1 ∧∆x2)

ωx(∆x1 ∧ c∆x2) = cωx(∆x1 ∧∆x2)

ωx(∆x1 ∧ (∆x2 + ∆̃x2)) = ωx(∆x1 ∧∆x2) + ωx(∆x1 ∧ ∆̃x2)

for all c ∈ R and ∆x1,∆x2, ∆̃x1, ∆̃x2. These axioms are also physically intuitive,
though it may require a little more effort to see this than in the one-dimensional
case. There is one additional important axiom we require, namely that

ωx(∆x ∧∆x) = 0 (8)

for all ∆x ∈ Rn. This reflects the geometrically obvious fact that when ∆1x =
∆2x = ∆x, the parallelogram with dimensions ∆x ∧∆x is degenerate and should
thus experience zero net flux. Any continuous assignment ω : x 7→ ωx that obeys
the above axioms is called8 a 2-form.

8There are several other equivalent definitions of a 2-form. For instance, as hinted at earlier, 1-

forms can be viewed as sections of the cotangent bundle T ∗Rn, and similarly 2-forms are sections

of the exterior power
V2 T ∗Rn of that bundle. Similarly, expressions such as v ∧ w, where

v, w ∈ TxRn are tangent vectors at a point x, can be given meaning by using abstract algebra to
construct the exterior power

V2 TxRn, at which point (v, w) 7→ v ∧w can be viewed as a bilinear

anti-symmetric map from TxRn × TxRn to
V2 TxRn (indeed it is the universal map with this

properties). One can also construct forms using the machinery of tensors.
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By applying (8) with ∆x := ∆1x+∆2x and then using several of the above axioms,
we arrive at the fundamental anti-symmetry property

ωx(∆x1 ∧∆x2) = −ωx(∆x2 ∧∆x1). (9)

Thus swapping the first and second vectors of a parallelogram causes a reversal in
the flux across that parallelogram; the latter parallelogram should then be consid-
ered to have the reverse orientation to the former.

If ω is a 2-form and φ : [0, 1]2 → Rn is a continuously differentiable function, we
can now define the integral

∫
φ

ω of ω against φ (or more precisely, the image of the
oriented square [0, 1]2 under φ) by the approximation∫

φ

ω ≈
∑

i

ωxi
(∆x1,i ∧∆x2,i) (10)

where the image of φ is (approximately) partitioned into parallelograms of dimen-
sions ∆x1,i ∧∆x2,i based at points xi. We do not need to decide what order these
parallelograms should be arranged in, because addition is both commutative9 and
associative. One can show that the right-hand side of (10) converges to a unique
limit as one makes the partition of parallelograms “increasingly fine”, though we
will not make this precise here.

We have thus shown how to integrate 2-forms against oriented 2-dimensional sur-
faces. More generally, one can define the concept of a k-form10 on an n-dimensional
manifold (such as Rn) for any 0 ≤ k ≤ n and integrate this against an oriented
k-dimensional surface in that manifold. For instance, a 0-form on a manifold X
is the same thing as a scalar function f : X → R, whose integral on a positively
oriented point x (which is 0-dimensional) is f(x), and on a negatively oriented
point x is −f(x). By convention, if k 6= k′, the integral of a k-dimensional form
on a k′-dimensional surface is understood to be zero. We refer to 0-forms, 1-forms,
2-forms, etc. (and formal sums and differences thereof) collectively as differential
forms.

Scalar functions enjoy three fundamental operations: addition (f, g) 7→ f + g,
pointwise product (f, g) 7→ fg, and differentiation f 7→ df , although the latter is
only obviously well-defined when f is continuously differentiable. These operations
obey various relationships, for instance the product distributes over addition

f(g + h) = fg + fh

and differentiation is a derivation with respect to the product:

d(fg) = (df)g + f(dg).

It turns out that one can generalise all three of these operations to differential
forms: one can add or take the wedge product of two forms ω, η to obtain new forms

9For some other notions of an integral, such as that of an integral of a connection with a
non-abelian structure group, one loses commutativity, and so one can only integrate along one-
dimensional curves.

10One can also define k-forms for k > n, but it turns out that the multilinearity and antisym-

metry axioms for such forms will force them to vanish, basically because any k vectors in Rn are
necessarily linearly dependent.
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ω + η and ω ∧ η; and, if a k-form ω is continuously differentiable, one can also form
the derivative dω, which is a k+1-form. The exact construction of these operations
requires a little bit of algebra and is omitted here. However, we remark that these
operations obey similar laws to their scalar counterparts, except that there are some
sign changes which are ultimately due to the anti-symmetry (9). For instance, if ω
is a k-form and η is an l-form, the commutative law for multiplication becomes

ω ∧ η = (−1)klη ∧ ω,

and the derivation rule for differentation becomes

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ (dη).

A fundamentally important, though initially rather unintuitive11 rule, is that the
differentiation operator d is nilpotent:

d(dω) = 0. (11)

The fundamental theorem of calculus generalises to Stokes’ theorem∫
S

dω =
∫

∂S

ω (12)

for any oriented manifold S and form ω, where ∂S is the oriented boundary of S
(which we will not define here). Indeed one can view this theorem (which generalises
(1), (7)) as a definition of the derivative operation ω 7→ dω; thus differentiation is
the adjoint of the boundary operation. (Thus, for instance, the identity (11) is
dual to the geometric observation that the boundary ∂S of an oriented manifold
itself has no boundary: ∂(∂S) = ∅.) As a particular case of Stokes’ theorem, we
see that

∫
S

dω = 0 whenever S is a closed manifold, i.e. one with no boundary.
This observation lets one extend the notions of closed and exact forms to general
differential forms, which (together with (11)) allows one to fully set up de Rham
cohomology.

We have already seen that 0-forms can be identified with scalar functions, and in
Euclidean spaces 1-forms can be identified with vector fields. In the special (but
very physical) case of three-dimensional Euclidean space R3, 2-forms can also be
identified with vector fields via the famous right-hand rule12, and 3-forms can be
identified with scalar functions by a variant of this rule. (This is an example of
Hodge duality.) In this case, the differentiation operation ω 7→ dω is identifiable to
the gradient operation f 7→ ∇f when ω is a 0-form, to the curl operation X 7→ ∇×X
when ω is a 1-form, and the divergence operation X 7→ ∇ ·X when ω is a 2-form.
Thus, for instance, the rule (11) implies that ∇×∇f = 0 and ∇ · (∇×X) = 0 for
any suitably smooth scalar function f and vector field X, while Stokes’ theorem
(12), with this interpretation, becomes the Stokes’ theorems for integrals of curves
and surfaces in three dimensions that may be familiar to you from several variable
calculus.

11It may help to view dω as really being a “wedge product” d∧ω of the differentiation operation
with ω, in which case (11) is a formal consequence of (8) and the associativity of the wedge product.

12This is an entirely arbitrary convention; one could just have easily used the left-hand rule to

provide this identification, and apart from some harmless sign changes here and there, one gets
essentially the same theory as a consequence.
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Just as the signed definite integral is connected to the unsigned definite integral
in one dimension via (2), there is a connection between integration of differential
forms and the Lebesgue (or Riemann) integral. On the Euclidean space Rn one has
the n standard co-ordinate functions x1, x2, . . . , xn : Rn → R. Their derivatives
dx1, . . . , dxn are then 1-forms on Rn. Taking their wedge product one obtains an
n-form dx1 ∧ . . .∧ dxn. We can multiply this with any (continuous) scalar function
f : Rn → R to obtain another n-form fdx1 ∧ . . . ∧ dxn. If Ω is any open bounded
domain in Rn, we then have the identity∫

Ω

f(x)dx1 ∧ . . . ∧ dxn =
∫

Ω

f(x) dx

where on the left we have an integral of a differential form (with Ω viewed as a
positively oriented n-dimensional manifold), and on the right we have the Riemann
or Lebesgue integral of f on Ω. If we give Ω the negative orientation, we have to
reverse the sign of the left-hand side. This correspondence generalises (2).

There is one last operation on forms which is worth pointing out. Suppose we have
a continuously differentiable map Φ : X → Y from one manifold to another (we
allow X and Y to have different dimensions). Then of course every point x in X
pushes forward to a point Φ(x) in Y . Similarly, if we let v ∈ TxX be an infinitesimal
tangent vector to X based at x, then this tangent vector also pushes forward to
a tangent vector Φ∗v ∈ TΦ(x)(Y ) based at Φ(x); informally speaking, Φ∗v can be
defined by requiring the infinitesimal approximation Φ(x + v) = Φ(x) + Φ∗v. One
can write Φ∗v = DΦ(x)(v), where DΦ : TxX → TΦ(x)Y is the derivative of the
several-variable map Φ at x. Finally, any k-dimensional oriented manifold S in X
also pushes forward to a k-dimensional oriented manifold Φ(S) in Y , although in
some cases (e.g. if the image of Φ has dimension less than k) this pushed-forward
manifold may be degenerate.

We have seen that integration is a duality pairing between manifolds and forms.
Since manifolds push forward under Φ from X to Y , we thus expect forms to pull-
back from Y to X. Indeed, given any k-form ω on Y , we can define the pull-back
Φ∗ω as the unique k-form on X such that we have the change of variables formula∫

Φ(S)

ω =
∫

S

Φ∗(ω).

In the case of 0-forms (i.e. scalar functions), the pull-back Φ∗f : X → R of a scalar
function f : Y → R is given explicitly by Φ∗f(x) = f(Φ(x)), while the pull-back of
a 1-form ω is given explicitly by the formula

(Φ∗ω)x(v) = ωΦ(x)(Φ∗v).

Similarly for other differential forms. The pull-back operation enjoys several nice
properties, for instance it respects the wedge product,

Φ∗(ω ∧ η) = (Φ∗ω) ∧ (Φ∗η),

and the derivative,
d(Φ∗ω) = Φ∗(dω).

By using these properties, one can recover rather painlessly the change-of-variables
formulae in several-variable calculus. Moreover, the whole theory carries effortlessly
over from Euclidean spaces to other manifolds. It is because of this that the theory
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of differential forms and integration is an indispensable tool in the modern study
of manifolds, especially in differential topology.
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