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Aesthetic pleasure needs no justification, because a life without such pleasure is one not

worth living. Dana Gioia, “Can Poetry Matter?”

Introduction

We’ve hit the big three theorems of vector calculus: Green’s, Stokes’, and the Divergence
Theorem (although Green’s theorem is really a pretty obvious special case of Stokes’ theo-
rem). But it’s an amazing fact that all of these theorems are really special cases of an even
larger theorem that unifies all that we’ve studied so far. This new theory also extends what
we’ve done to spaces of arbitrary (finite) dimension. It rests on the idea of differential forms.

Differential forms are hard to motivate right off the bat. It won’t be immediately clear
how differential forms are related to what we’ve done, but be patient. For now treat differ-
ential forms as a new kind of mathematical object; we’re going to learn how to manipulate
them—add, multiply, differentiate, and integrate. It will be quite abstract and “formal” at
first, but you’ll soon see how they connect with what we’ve already done.

Manifolds

You’ve already seen many examples of one and two dimensional manifolds. A one di-
mensional manifold C is just a curve. Such a curve can exist in any dimension and can
be parameterized as X(t) (I’m using this instead of R), where t ranges over some interval
D = (a, b) in lR1 and

X(t) = (x1(t), x2(t), . . . , xn(t))

if the curve exists in n dimensions. You may recall that we required that our curves be
smooth, which meant that the curve had to have a proper parameterization—X(t) must be
differentiable, injective, and X′(t) ̸= 0 for any t in D. Smooth one dimensional manifolds
are just smooth curves. Recall that the vector X′(t) is tangent to the manifold C.

A smooth two dimensional manifold S is just a surface, of which we’ve seen many exam-
ples (in three dimensions.) Such a surface can be specified as X(u, v), where (u, v) ranges
over some appropriate subset D of lR2. The function X(u, v) is of the form

X(u, v) = (x1(u, v), x2(u, v), . . . , xn(u, v)),

although we’ve mostly considered the case n = 3. There were some technicalities in dealing
with surfaces and integrating over them—the surface had to be orientable, and we did require
that the tangent vectors ∂X

∂u
and ∂X

∂v
be “independent”, i.e., neither a multiple of the other.

If this isn’t true then our surface S might end up being only one-dimensional. Also, the
surface was not allowed to self-intersect.

Based on the above, it’s not much of a stretch to consider a k-dimensional manifold. Let
D be some bounded open region in lRk. We’ll use coordinates u = (u1, u2, . . . , uk) on D.
Consider a function

X(u) = (X1(u), . . . , Xn(u))
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defined on D, which maps each point in D into a point in n dimensional space. Take
M = X(D), the image of D in lRn. We will say that M is a smooth k-manifold if

• The function X is C1.

• The function X is injective (distinct points in D go to distinct points in lRn.

• The tangent vectors
∂X

∂uk

=

(
∂X1

∂uk

, . . . ,
∂Xn

∂uk

)
are all linearly independent at all points in D. This means that the only solution to

c1
∂X1

∂uk

+ · · ·+ cn
∂Xn

∂uk

= 0

is c1 = c2 = · · · = cn = 0. Since this is a semi-intuitive account of differential forms
and manifolds, we won’t harp too much on this last requirement.

Example 1: Let D be the open cube 0 < u1, u2, u3 < 1 in lR3. Take the mapping
X from lR3 to lR5 to be defined by

X1(u1, u2, u3) = u1u2

X2(u1, u2, u3) = 3u3

X3(u1, u2, u3) = u2
1

X4(u1, u2, u3) = u3 − 2u2

X5(u1, u2, u3) = 3.

The function X is obviously C1. It’s a bit tedious (Maple makes it easier) but
you can check that no two points in D go to the same image point in lR5, and the
tangent vectors are in fact all independent. The image M = X(D) is a smooth
3-manifold in lR5.

Differential Forms

Our discussions will take place in lRn. We’ll use (x1, . . . , xn) as coordinates, and write x
for the point (x1, . . . , xn). We will define a 0-form ω to be simply a function on lRn, so

ω = f(x1, . . . , xn).

That’s all there is to say about 0-forms.
A basic or elementary 1-form in lRn is an expression like dxi, where 1 ≤ i ≤ n. More

generally, a 1-form ω is an expression like

ω = F1(x) dx1 + F2(x) dx2 + · · ·Fn(x) dxn
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where the Fi are functions of x. You’ve actually encountered 1-forms before, when we did
Green’s theorem. Recall that Green’s Theorem said∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy =

∫
∂D

F1(x, y) dx+ F2(x, y) dy.

The integrand on the right is an example of a 1-form.
A differential 1-form is not a passive object, but in fact can be thought of as a kind of

“function.” The basic 1-form dxi accepts as input a single vector v and outputs vi, the ith
component of v, so

dxi(v) = vi.

A general 1-form ω = F1(x) dx1 + · · ·Fn(x) dxn acts on a single input vector v as

ω(v) = F1(x)v1 + · · ·Fn(x)vn.

You can add two 0-forms in the obvious way (as functions). You can similarly add two
1-forms, e.g.,

(x2
2 dx1 + ex1 dx2) + (2 dx1 − x1 dx2) = (x2

2 + 2) dx1 + (ex1 − x1) dx2.

A basic differential 2-form ω is an expression like

ω = dxi ∧ dxj

where 1 ≤ i, j ≤ n. The symbol ∧ denotes what is called the wedge or exterior product.
Don’t worry too much about what it means (yet); in the end it will mean essentially just
dxidxj, an object suitable to stick under a double integral.

Like 1-forms, 2-forms also act on vectors. A basic two form ω = dxi ∧ dxj accepts as
input TWO vectors v1 and v2. The output is the determinant

ω(v1,v2) = dxi ∧ dxj(v1,v2) = det

[
dxi(v1) dxi(v2)
dxj(v1) dxj(v2)

]

Based on the properties for the determinant that we’ve seen, you can immediately con-
clude that

• dxi ∧ dxj = −dxj ∧ dxi

• dxi ∧ dxi = 0

This raises an interesting question: “How many different 2-forms are there in n dimensions?”
If you count all possible combinations for 1 ≤ i, j ≤ n for dxi ∧ dxj you get n2, but in fact n
of these are really zero. That leaves n2 −n possible 2-forms, although in some sense there is
only half that many, for the second property above shows that, e.g., dx1∧dx2 = −dx2∧dx1.
There are thus only (n2 − n)/2 half this many “independent” 2-forms.

A (general) differential 2-form is an expression of the form

ω = F12(x)dx1 ∧ dx2 +F13(x)dx1 ∧ dx3 + · · ·Fn−1,n(x)dxn−1 ∧ dxn =
∑

1≤i<j≤n

Fij(x)dxi ∧ dxj.
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Notice that we can always assume that i < j in the sum above, for if we had j < i we could
simply swap the order of dxj ∧ dxi and replace it with −dxi ∧ dxj.

You can probably guess how such a 2-form acts on two input vectors:

ω(v1,v2) =
∑

1≤i<j≤n

Fij(x)dxi ∧ dxj(v1,v2) =
∑
i,j>i

Fij(x)det

[
dxi(v1) dxi(v2)
dxj(v1) dxj(v2)

]

Example 2: Let ω denote the 2-form in three dimensions

ω = (x1 + 2x3)dx1 ∧ dx2 + x2dx1 ∧ dx3.

Let’s compute ω applied to the vectors v1 = (1, 3, 3), v2 = (−1, 0, 7). You get

ω(v1,v2) = (x1 + 2x3)det

[
dx1(v1) dx1(v2)
dx2(v1) dx2(v2)

]
+ x2 det

[
dx1(v1) dx1(v2)
dx3(v1) dx3(v2)

]

= (x1 + 2x3)det

[
1 −1
3 0

]
+ x2 det

[
1 −1
3 7

]
= 3(x1 + 2x3) + 10x2 = 3x1 + 10x2 + 6x3.

Now we’re ready for the definition of a basic k-form: a basic k-form ω in n dimensions is
an expression of the form

ω = dxi1 ∧ dxi2 ∧ · · · ∧ dxik

where 1 ≤ ij ≤ n for all j. Such a k-form accepts as input k vectors v1, . . . ,vk to give output

ω(v1, . . . ,vk) = det


dxi1(v1) dxi1(v2) · · · dxi1(vk)
dxi2(v1) dxi2(v2) · · · dxi2(vk)

...
...

...
...

dxik(v1) dxik(v2) · · · dxik(vk)


By using the properties of determinants that we’ve already deduced, it’s easy to see that

dxi1 ∧ · · · ∧ dxij ∧ · · · dxik ∧ · · · ∧ dxim = −dxi1 ∧ · · · ∧ dxik ∧ · · · dxij ∧ · · · ∧ dxim (1)

dxi1 ∧ · · · ∧ dxij ∧ · · · dxij ∧ · · · ∧ dxim = 0 (2)

Given the above two facts, it’s interesting to contemplate the question “how many indepen-
dent basic k-forms are there in n dimensions?” It’s not too hard to figure out, so I’ll leave
it for you.

A (general) k-form ω is an expression of the form

ω =
∑

1≤i1,...,ik≤n

Fi1,...,ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik . (3)

Such a k-form accepts k input vectors to produce

ω(v1, . . . ,vk) =
∑

1≤i1,...,ik≤n

Fi1,...,ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik(v1, . . . ,vk).
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With this notation, it’s easy to see why a function is called a 0-form—it doesn’t accept any
input vectors.

Integrating Differential Forms

Integrating differential forms is easy. The general rule is that one integrates a k-form
over a k-manifold.

Let’s first look at how to integrate a 1-form over a 1-manifold. Accordingly, let M = X(t)
with a ≤ t ≤ b be a smooth 1-manifold in lRn and let ω be a 1-form defined in a neighborhood
of M . We use

∫
M ω to denote the integral of ω over M and define this integral by∫

M
ω =

∫ b

a
ω(X′(t)) dt. (4)

Example 3: Let M be the 1-manifold in lR3 defined by X(t) = (3t, t2, 5− t) for
0 ≤ t ≤ 2. You can see that M is just a curve in three dimensions. Let ω be
the 1-form ω = 2x2dx1 − x1x3dx2 + dx3. Using equation (4) and recalling how a
1-form acts on input vectors we obtain∫

M
ω =

∫ 2

0
ω((3, 2t,−1)) dt =

∫ 2

0
((2x2)(3)− x1x3(2t)− 1) dt

=
∫ 2

0
(6t3 − 24t2 − 1) dt = −42.

Example 4: Suppose that F(x) = (F1, F2, . . . , Fn) is a vector field in lRn (so
each of the Fi are functions of x). Define the differential form

ω = F1dx1 + F2dx2 + · · ·+ Fndxn.

If we compute the integral of ω over some 1-manifold defined by M = R(t) =
(x1(t), . . . , xn(t)) we get∫

M
ω =

∫ b

a
(F1dx1 + F2dx2 + · · ·+ Fndxn)(R

′(t)) dt

=
∫ b

a
(F1

∂x1

∂t
+ · · ·+ Fn

∂xn

∂t
) dt =

∫
M
F · dR.

In other words, the integral of the 1-form ω over M is just the familiar line
integral of the vector field F over the curve M .

One can integrate a 2-form ω over a 2-manifold M . Suppose that M is parameterized by
M = X(u), where u = (u1, u2) ranges over D, a region in lR2. The integral is defined by∫

M
ω =

∫
D
ω(

∂X

∂u1

,
∂X

∂u2

) du1 du2.

Example 5: Let M be a 2-manifold in lR4 parameterized by

X(u) = (u1, u1 − u2, 3− u1 + u1u2,−3u2)
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where u2
1+u2

2 < 1. Take ω = x2 dx1∧dx3−x4dx3∧dx4. You can easily compute
that

∂X

∂u1

= (1, 1, u2 − 1, 0)

∂X

∂u2

= (0,−1, u1,−3)

and that

ω(
∂X

∂u1

,
∂X

∂u2

) = x2 det

[
1 0
u2 − 1 u1

]
− x4 det

[
u2 − 1 u1

0 −3

]
= x2u1 + 3x4(u2 − 1)

= u2
1 − u1u2 − 9u2

2 + 9u2.

As a result∫
M
ω =

∫ 1

−1

∫ √
1−u2

1

−
√

1−u2
1

(u2
1 − u1u2 − 9u2

2 + 9u2) du2 du1 = −2π.

Example 6: Consider a smooth 2-manifold M in lR3 parameterized as X(u) for
u in D ⊂ lR2. Let

ω = F1dx2 ∧ dx3 + F2dx1 ∧ dx3 + F3dx1 ∧ dx2

be a 2-form defined in a neighborhood of M . Then∫
M
ω =

∫
D
F1(dx2 ∧ dx3)(

∂X

∂u1

,
∂X

∂u2

) + F2(dx1 ∧ dx3)(
∂X

∂u1

,
∂X

∂u2

) + F3(dx1 ∧ dx2)(
∂X

∂u1

,
∂X

∂u2

)

=
∫
D

(
F1 det

[
∂X2

∂u1

∂X2

∂u2
∂X3

∂u1

∂X3

∂u2

]
+ F2 det

[
∂X1

∂u1

∂X1

∂u2
∂X3

∂u1

∂X3

∂u2

]
+ F3 det

[
∂X1

∂u1

∂X1

∂u2
∂X2

∂u1

∂X2

∂u2

])
du1 du2

=
∫
D
F1(

∂X2

∂u1

∂X3

∂u2

− ∂X2

∂u2

∂X3

∂u1

) + F2(
∂X1

∂u1

∂X3

∂u2

− ∂X1

∂u2

∂X3

∂u1

)

+F3(
∂X1

∂u1

∂X2

∂u2

− ∂X1

∂u2

∂X2

∂u1

) du1 du2

=
∫
M
F · dA.

In other words, the integral of ω over M is just the flux of the vector field F =
(F1, F2, F3) over M . If the step between the last two equations looks mysterious,
all I’ve done is use the fact that dA = (∂X/∂u1) × (∂X/∂u2) and dotted this
with F; it’s the usual procedure for computing flux over a parameterized surface.

You can probably see how we should integrate a general k-form over a k-manifold. If the
manifold M is parameterized by X(u) for u ∈ D ⊂ lRk, and if we have a general k-form ω
given by an equation like (3) then∫

M
ω =

∑
1≤i1,...,ik≤n

∫
D
Fi1,...,ik(X(u))(dxi1 ∧ · · · ∧ dxik)(

∂X

∂u1

, . . . ,
∂X

∂uk

) du1 · · · duk.
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Example 7: Let M be a 3-manifold in lR4 parameterized as

X(u1, u2, u3) = (u2u3, u
2
1, 1− 3u2 + u3, u1u2)

for u2
1 + u2

2 + u2
3 < 1. Take

ω = x3 dx1 ∧ dx2 ∧ dx4.

It’s easy to compute that

∂X

∂u1

= (0, 2u1, 0, u2)

∂X

∂u2

= (u3, 0,−3, u1)

∂X

∂u3

= (u2, 0, 1, 0).

Then

ω(
∂X

∂u1

,
∂X

∂u2

,
∂X

∂u3

) = x3det

 1 u3 u2

2u1 0 0
u2 u1 0

 = 2u2
1u2 − 6u2

1u
2
2 + 2u2

1u2u3.

Finally, we find that∫
M
ω =

∫ ∫ ∫
D
(2u2

1u2 − 6u2
1u

2
2 + 2u2

1u2u3) du1 du2 du3 = − 8

35
π.

The last triple integral is easier if you convert it to spherical.

Example 8: Let M be an open region in lRn and suppose that M is parameter-
ized as X(u) where u ∈ D, where D is another region in lRn. In other words, M
is an n-manifold in n-dimensional space. Of course, we could very easily parame-
terize M by taking D = M and using X(u) = u, the identity map, but this isn’t
necessary, and by not doing so you’ll see some important issues in integrating
differential forms over manifolds.

Let ω = f(x) dx1∧dx2∧ · · ·∧dxn (this is the most general n-form in lRn—why?)
Then ∫

M
ω =

∫
D
f(X(u))(dx1 ∧ · · · ∧ dxn)(

∂X

∂u1

, . . . ,
∂X

∂un

)

=
∫
D
f(X(u))det


∂X1

∂u1
· · · ∂Xn

∂u1
...

...
...

∂X1

∂un
· · · ∂Xn

∂un

 du1 . . . dun

= ±
∫
M
f(x1, . . . , xn) dx1 . . . dxn

where the last equality follows from the change of variables formula in n dimen-
sions (notice that the absolute value signs on the determinant are missing). The
integral of ω over M is PLUS OR MINUS the integral of f over M . It could be
either, depending on the parameterization.
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The last example raises an important issue that we won’t entirely resolve. You might
hope the quantity

∫
M ω should depend only on M and ω, but this is true only up to a minus

sign. The problem is that any manifold which is orientable has two possible orientations, and
this is where the sign ambiguity arises. You’ve already encountered this in line and surface
integrals: if C is a curve in two or three dimensions and F is a vector field, the quantity∫
C F ·dR is not well-defined. It depends on which direction you parameterize or traverse the
curve C; if you consider this integral physically, as work done, it clearly depends on whether
you’re moving from point A to point B or the reverse. The sign ambiguity also arose in
doing flux integrals over a surface. Which direction you choose for the normal affects the
sign of the answer.

It is a general fact (that I’ll let you check for yourself) that the quantity
∫
M ω does not

depend on how M is parameterized, except for the sign of the answer. Proving this re-
ally comes down to the change of variable formula for integral of n variables. The different
signs are a manifestation of how we chose to orient M (implicitly) when we parameterized it.

The Wedge Product

The wedge (or exterior product allows us to “multiply” differential forms. Suppose that
f is a 0-form (a function) and ω is a k-form as given in equation (3). The wedge product of
f with ω is just

f ∧ ω =
∑

i1,...,ik

fFi1,...,ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

Suppose that η is an m-form,

η =
∑

j1,...,jm

Gj1,...,jm(x)dxj1 ∧ dxj2 ∧ · · · ∧ dxjm .

The wedge product of η with ω is the k +m form given by “adjoining” the two forms, as

η ∧ ω =
∑

Fi1,...,ik(x)Gj1,...,jm(x)dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjm .

As complicated as this looks, it’s pretty easy in any specific example, and the rules (1) and
(2) make the result a lot smaller than you might think.

Example 9: Let ω = x2 dx1 ∧ dx3 + dx1 ∧ dx4 and η = (x1 + 1)dx2 ∧ dx4. Then

ω ∧ η = x2(x1 + 1) dx1 ∧ dx3 ∧ dx2 ∧ dx4 + (x1 + 1) dx1 ∧ dx4 ∧ dx2 ∧ dx4.

However, by equation (2) the second term above (which contains two copies of
dx4) is zero. Also, by property (1) we can flip the dx2 and dx3 in the first term,
which will introduce a minus sign, so

ω ∧ η = −x2(x1 + 1) dx1 ∧ dx2 ∧ dx3 ∧ dx4.

It’s not hard to prove the following properties for the wedge product: If f is a function,
ω1 and ω2 are k-forms, η an m-form, and τ any form then

(ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η
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(ω1 ∧ η) ∧ τ = ω1 ∧ (η ∧ τ)

(fω1) ∧ η = f(ω1 ∧ η) = ω1 ∧ (fη)

ω1 ∧ η = (−1)kmη ∧ ω1

Only the last property is at all “nonobvious”, but a little experimentation will show you how
to prove it. In summary, this last property says that ω ∧ η = η ∧ ω UNLESS both forms are
of odd degree, in which case the sign flips.

The Exterior Derivative

Given that differential forms can be integrated, it stands to reason that they can also be
differentiated. The exterior derivative d is an operator that turns k-forms into k + 1-forms,
according to very simple rules:

• The exterior derivative of a 0-form f(x) in lRn (recall, f is just a function) is

df =
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn

dxn. (5)

• The exterior derivative of the k-form

ω =
∑

i1,...,ik

Fi1,...,ik dxi1 ∧ · · · ∧ dxik

is given by
dω =

∑
i1,...,ik

dFi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik (6)

where dFi1,...,ik is computed according to equation (5).

Example 10: Let ω = (x1 + x2
3)dx1 ∧ dx2. Then

dω = d(x1 + x2
3) ∧ dx1 ∧ dx2

= dx1 ∧ dx1 ∧ dx2 + 2x3 dx3 ∧ dx1 ∧ dx2

= 2x3 dx3 ∧ dx1 ∧ dx2

= −2x3 dx1 ∧ dx3 ∧ dx2

= 2x3 dx1 ∧ dx2 ∧ dx3

Notice the term with two dx1’s is zero, and in the last two steps I just put dω in
“standard” form.

Generalized Stokes’ Theorem

The generalized version of Stokes’ Theorem embodies almost everything we’ve done in
this course; the divergence theorem and the original Stokes’ Theorem are special cases of
this more general theorem. Before stating this theorem we need a few preliminary remarks.
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A smooth k-manifold M in lRn may or may not be orientable. If it is orientable then it
has two possible orientations, as we saw in examples above. It’s not hard to believe (though
we won’t stop to prove) that the boundary ∂M of a k-manifold M is itself a manifold of
dimension k − 1. The boundary may or may not be orientable. We will assume that the
manifolds that follow, as well as their boundaries, are orientable. Recall that in the diver-
gence theorem we related a volume integral to a surface integral, and for things to work
out properly we needed the surface (in particular, dA) to be oriented properly. Similarly in
Stokes’ theorem, after choosing a direction for the unit normal n on a surface S, we then
had to orient ∂S with the right hand rule. Similar considerations hold in higher dimensions.
If we have a manifold M and we have chosen an orientation for M , then this induces a
“consistent” orientation on ∂M , somewhat akin to the right hand rule. How this can be
done we won’t go into for now. The down side is that our integrals may occasionally be off
by a minus sign.

Stokes’ Theorem: (Generalized version) Let M be a smooth oriented k-manifold M with
consistently oriented smooth boundary ∂M . Let ω be a k−1 form defined in a neighborhood
of M . Then ∫

M
dω =

∫
∂M

ω.

Example 11: Let M be as in Example 5. Given how M was parameterized,
you will probably believe that ∂M can be described as the image of the bound-
ary of the unit disk, u2

1 + u2
2 = 1, under the mapping from lR2 to lR4 that

parameterized M . Given that the boundary of the disk can be parameterized by
u1 = cos(t), u2 = sin(t), it seems reasonable that the one dimensional curve ∂M
can be parameterized as

Y(t) = (cos(t), cos(t)− sin(t), 3− cos(t) + cos(t) sin(t),−3 sin(t))

(notice I’m using Y for ∂M .) Now let ω = x2
3 dx1. It’s easy to compute that

dω = −2x3 dx1 ∧ dx3.

Let’s first compute
∫
M dω:∫

M
dω =

∫ 1

−1

∫ √
1−u2

1

−
√

1−u2
1

dω(
∂X

∂u1

,
∂X

∂u2

)

=
∫ 1

−1

∫ √
1−u2

1

−
√

1−u2
1

−2x3 det

[
1 0
u2 − 1 u1

]
du2 du1

=
∫ 1

−1

∫ √
1−u2

1

−
√

1−u2
1

−2(3− u1 + u1u2)u1 du2 du1 =
π

2
.

Now for
∫
∂M ω we have∫

∂M
ω =

∫ 2π

0
ω(Y′(t)) dt

=
∫ 2π

0
(3− cos(t) + cos(t) sin(t))2(− sin(t)) dt

=
π

2
.
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Example 12: Let F = F1i + F2j + F3k be a vector field in three dimensions
and let ω = F1dx1 + F2dx2 + F3dx3, a 1-form. Suppose that M is an orientable
2-manifold (a surface) in three dimensions with one dimensional boundary ∂M .
As we saw in Example 4, ∫

∂M
ω =

∫
∂M

F · dR.

Now let’s compute dω and integrate it over M . If you write out dω you find that
many terms cancel (they contain a wedge product with identical dxi’s) and you
obtain

dω =

(
∂F2

∂x1

− ∂F1

∂x2

)
dx1 ∧ dx2 +

(
∂F3

∂x1

− ∂F1

∂x3

)
dx1 ∧ dx3

+

(
∂F3

∂x2

− ∂F2

∂x3

)
dx2 ∧ dx3

Now define a vector field G = G1i+G2j+G3k by taking

G1 =

(
∂F3

∂x2

− ∂F2

∂x3

)

G2 =

(
∂F3

∂x1

− ∂F1

∂x3

)

G3 =

(
∂F2

∂x1

− ∂F1

∂x2

)
.

In short, G = ∇× F. Then we can write

dω = G1dx2 ∧ dx3 +G2dx1 ∧ dx3 +G3dx1 ∧ dx2.

If you look at Example 6 (and replace F there by G here), you find that∫
M
dω =

∫
M
G · dA.

But given that G = ∇× F, we conclude from the generalized Stokes’ Theorem
that ∫

∂M
F · dR =

∫
M
(∇× F) · dA

which is the usual version of Stokes’ Theorem in three dimensions!

Example 12: Let M be a bounded region in three dimensions with orientable
two dimensional boundary ∂M . Again, let F = F1i + F2j + F3k be a smooth
vector field defined on M and define the 2-form

ω = F1 dx2 ∧ dx3 + F2 dx1 ∧ dx3 + F3 dx1 ∧ dx2

Again referring back to Example 6, we find that∫
∂M

ω =
∫
∂M

F · dA,
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the flux of F over ∂M . Now compute dω. Most of the terms are zero and we end
up with

dω =

(
∂F1

∂x1

+
∂F2

∂x2

+
∂F3

∂x3

)
dx1 ∧ dx2 ∧ dx3 = (∇ · F)dx1 ∧ dx2 ∧ dx3.

Now from Example 8 we know that (if M is oriented correctly)∫
M
dω =

∫
M
∇ · F dV.

From the general Stokes’ Theorem we conclude that∫
∂M

F · dA =
∫
M
∇ · F dV.

which is the divergence theorem!
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