MATH 253: CHINESE REMAINDER THEOREM

DAN YASAKI

1. Set-up

Theorem 1.1. Let $m=m_{1} m_{2} \cdots m_{r}$ with $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $i \neq j$. Then the system

$$
\left\{\begin{array}{cccc}
x & \equiv & a_{1} & \left(\bmod m_{1}\right) \\
x & \equiv & a_{2} & \left(\bmod m_{2}\right) \\
& \vdots & & \\
x & \equiv & a_{r} & \left(\bmod m_{r}\right)
\end{array}\right\}
$$

has a unique solution modulo m, given by

$$
x=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{r} e_{r}, \quad \text { where } e_{i}=t_{i} w_{i}
$$

with

$$
w_{i}=\frac{m}{m_{i}}=\prod_{\substack{1 \leq j \leq r \\ j \neq i}} m_{j} \quad \text { and } \quad t_{i} w_{i} \equiv 1 \quad\left(\bmod m_{i}\right)
$$

Remark. Roughly speaking, the e_{i} is 1 in the $\bmod m_{i}$ direction and 0 in the $\bmod m_{j}$ direction for $i \neq j$.

Steps to solve CRT problem.
(1) Identify a_{i} and m_{i}.
(2) Compute m and w_{i}.
(3) Compute t_{i}, the inverse of w_{i} modulo m_{i}.
(4) There is a unique solution modulo m

$$
x=a_{1} t_{1} w_{1}+a_{2} t_{2} w_{2}+\cdots+a_{r} t_{r} w_{r} .
$$

2. EXERCISES

(1) (Note: This problem is outdated.) My younger son had 500 action figures before we moved to Greensboro. He has not bought any new ones, but he lost a few in the process of the move, and he wants to know how many he has now. He can only count accurately to 10 , but he knows that you are a number theorist, and he has faith in you. He reports that there is an odd number left. When you tell him that is not enough information, he reports that there is 1 left over if he lines them up 5 at a time, 2 left over if he lines the up 7 at a time, and 3 left over if he lines them up 9 at a time. How many action figures does he have?
(2) Pick a secret number from 1 to 100 . Make your own CRT type puzzle and put it on the board for others to solve.

3. Solution to (1)

Let x be the number of action figures my son has. Then

$$
\begin{aligned}
x \equiv 1 & (\bmod 2) \\
x \equiv 1 & (\bmod 5) \\
x \equiv 2 & (\bmod 7) \\
x \equiv 3 & (\bmod 9)
\end{aligned}
$$

$$
\text { since } x \text { is odd }
$$

since there is 1 left over in rows of 5
since there is 2 left over in rows of 7
since there is 3 left over in rows of 9

Note that we can solve for x using CRT since

$$
\operatorname{gcd}(2,5)=\operatorname{gcd}(2,7)=\operatorname{gcd}(2,9)=\operatorname{gcd}(5,7)=\operatorname{gcd}(5,9)=\operatorname{gcd}(7,9)=1
$$

Let's follow the steps (1)-(4) given above.
(1) We identify a_{i} and m_{i}. We have

$$
a_{1}=1, m_{1}=2 \quad a_{2}=1, m_{2}=5 \quad a_{3}=2, m_{3}=7 \quad a_{4}=3, m_{4}=9
$$

(2) We compute

$$
\begin{aligned}
m & =m_{1} m_{2} m_{3} m_{4}=630 \\
w_{1} & =m_{2} m_{3} m_{4}=315 \\
w_{2} & =m_{1} m_{3} m_{4}=126 \\
w_{3} & =m_{1} m_{2} m_{4}=90 \\
w_{4} & =m_{1} m_{2} m_{3}=70 .
\end{aligned}
$$

(3) t_{1} : The inverse of 315 modulo 2 is the same as the inverse of 1 modulo 2 , which is 1 by inspection. Specifically, we choose $t_{1}=1$.
t_{2} : The inverse of 126 modulo 5 is the same as the inverse of 1 modulo 5 , which is 1 by inspection. Specifically, we choose $t_{2}=1$.
t_{3} : The inverse of 90 modulo 7 is the same as the inverse of -1 modulo 7 , which is -1 . Specifically, we choose $t_{3}=-1$ (Note: Some of you will instead say the inverse of 90 modulo 7 is the same as the inverse of 6 modulo 7 , which is 6 . That is fine as well. My way just keeps the numbers smaller if you are willing to use negative numbers.)
t_{4} : The inverse of 70 modulo 9 is the same as the inverse of 7 modulo 9 , which is 4 by inspection. Specifically, $t_{4}=4$.
(4) We compute

$$
\begin{aligned}
x & \equiv a_{1} t_{1} w_{1}+a_{2} t_{2} w_{2}+a_{3} t_{3} w_{3}+a_{4} t_{4} w_{4} \quad(\bmod 630) \\
& \equiv(1 \cdot 1 \cdot 315)+(1 \cdot 1 \cdot 126)+(2 \cdot(-1) \cdot 90)+(3 \cdot 4 \cdot 70) \quad(\bmod 630) \\
& \equiv 1101 \quad(\bmod 630) \\
& \equiv 471 \quad(\bmod 630) .
\end{aligned}
$$

In other words, $x=471+630 k$ for some integer k. Since my son has less than 500 action figures, he must have 471 .

Department of Mathematics and Statistics, The University of North Carolina at GreensBoro, Greensboro, NC 27412, USA

E-mail address: d_yasaki@uncg.edu

