4.7 SOLUTIONS/HINTS

DAN YASAKI

Recall that Newton's method produces a sequence $x_{1}, x_{2}, x_{3}, \ldots$ of approximate solutions to $f(x)=0$ given an initial guess x_{0},

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

2. We compute $f^{\prime}(x)=3 x^{2}+3$. Plugging $x_{0}=0$ into the formula for Newton's method, we get

$$
x_{1}=-\frac{1}{3} .
$$

Plugging $x_{1}=-1 / 3$ into the formula for Newton's method, we get

$$
x_{2}=-\frac{29}{90} .
$$

4. We compute $f^{\prime}(x)=2-2 x$ We plug x_{0} into the formula to get x_{1}. We plug x_{1} into the formula to get x_{2}. For $x_{0}=0$, we get

$$
x_{1}=-\frac{1}{2}, \quad \text { and } \quad x_{2}=-\frac{5}{12} .
$$

For $x_{0}=2$, we get

$$
x_{1}=\frac{5}{2}, \quad \text { and } \quad x_{2}=\frac{29}{12}
$$

22. The graphs intersect when $\sqrt{x}=3-x^{2}$. Since Newton's method helps us approximate zeros, we need to rewrite this in the form $f(x)=0$. Moving everything to one side, we see that we want the a solution to $f(x)=0$, where $f(x)=3-x^{2}-\sqrt{x}$. We compute that $f^{\prime}(x)=-2 x-\frac{1}{2} x^{-1 / 2}$. We then use Newton's method several times to get

$$
\begin{aligned}
x_{1} & =1.44546136321895392547991604940 \\
x_{2} & =1.35726980816019856304391663010 \\
x_{3} & =1.35497934665600245042656257732 \\
x_{4} & =1.35497780783011808206111183158 \\
x_{5} & =1.35497780782942360206533157971 \\
x_{6} & =1.35497780782942360206533143826 \\
x_{7} & =1.35497780782942360206533143826 \\
x_{8} & =1.35497780782942360206533143826 \\
x_{9} & =1.35497780782942360206533143826 \\
x_{10} & =1.35497780782942360206533143826
\end{aligned}
$$

This is pretty convincing evidence that the root is $r=1.35498$, rounded to 5 decimal places.
30. For this exercise, use the picture from page 279. Note that from the definition of radians, we have that $\theta=\frac{s}{r}=\frac{3}{r}$. In particular, if we can estimate one, we have an estimate for the other.

The key point to notice is that if we bisect the angle θ, we get a line that is perpendicular to the yellow chord, which splits the yellow chord in half. Thus we get a triangle

It follows that $\sin \left(\frac{\theta}{2}\right)=\frac{1}{r}$. In particular, we have $\sin \left(\frac{\theta}{2}\right)=\frac{\theta}{3}$. To use Newton's method, we need to write this in the form $f(x)=0$. Move everything to one side to see that we can take f to be

$$
f(x)=\sin \left(\frac{x}{2}\right)-\frac{x}{3} .
$$

Then $f^{\prime}(x)=\cos \left(\frac{x}{2}\right)-\frac{1}{3}$. We compute several iterations of Newton's Method with initial guess $x_{0}=2$.

$$
\begin{aligned}
x_{1} & =4.76667118856296329239586888946 \\
x_{2} & =3.47244868771475976179951502274 \\
x_{3} & =3.06074062730863720347253602379 \\
x_{4} & =2.99347087944111670882818806416 \\
x_{5} & =2.99156466739712137562657920905 \\
x_{6} & =2.99156313644518688645349548499 \\
x_{7} & =2.99156313644419942043098810996 \\
x_{8} & =2.99156313644419942043098769915 \\
x_{9} & =2.99156313644419942043098769915 \\
x_{10} & =2.99156313644419942043098769915
\end{aligned}
$$

This is pretty convincing evidence that the solution, rounded to five decimal places is $\theta=2.99156$. We have $r=\theta / 3$, so we have $r=0.99718$ rounded to five decimal places.

Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, NC 27412, USA

E-mail address: d_yasaki@uncg.edu
URL: http://www.uncg.edu/~d_yasaki/

