4.1 SOLUTIONS

DAN YASAKI

2. The function has a global maximum at c and a global minimum at b. This is consistent with the Extreme Value Theorem since the function is continuous on a closed interval and attains its global extrema.
3. The function does not have a global maximum or global minimum. Since the function is not continuous, the Extreme Value Theorem does not say anything about the function.
4. The function has a global maximum at a and a global minimum at c. Since the function is not continuous, the Extreme Value Theorem does not say anything about the function.
5. We have a global maximum of 5 at 0 and no global minimum.
6. (b) We have horizontal tangent lines at a and b, and a negative slope at c.
7. (a) We have corners at a and b and a negative slope at c.
8. See graph of $y=\frac{6}{x^{2}+2}$ on $(-1,1)$ below. The function has absolute maximum of 3 at 0 and no absolute minimum. The domain is not a closed interval, so the Extreme Value Theorem does not say anything about this function.

9. The function has an absolute maximum of 2 at 4 and no absolute minimum. The function is not continuous, so the Extreme Value Theorem does not say anything about this function.

10. The global maximum is 0 and global minimum is -3 .

11. The global maximum is 4 and global minimum is -5 .

12. The global maximum is 1 and global minimum is $\frac{1}{2}$.

13. The global maximum is 0 and global minimum is $-\sqrt{5}$.

14. We compute

$$
g^{\prime}(x)=e^{-x}-x e^{-x}=e^{-x}(1-x) .
$$

This is never undefined, and equal to 0 when $x=1$. Since 1 is also an endpoint, we just evaluate g at $x=1$ and $x=-1$ to see that the global maximum is e^{-1} and global minimum is $-e^{-1}$.

42. We want to find the absolute extrema of $f(x)=x^{5 / 3}$ on $[-1,8]$. We compute

$$
f^{\prime}(x)=\frac{5}{3} x^{2 / 3}
$$

This is never undefined and equal to zero at 0 . We plug in this critical point and endpoints into f and compare values

$$
f(0)=0, \quad f(-1)=-1, \quad f(8)=2^{5}=32
$$

It follows that the absolute maximum of 32 is attained at 8 and absolute minimum of -1 is attained at -1 .
44. We want to find the absolute extrema of $h(\theta)=3 \theta^{2 / 3}$ on $[-27,8]$. We compute

$$
h^{\prime}(\theta)=2 \theta^{-1 / 3}
$$

This is undefined when $\theta=0$ and never 0 . We plug in this critical point and the endpoints into h and compare values

$$
h(-27)=27, \quad h(8)=12, \quad h(0)=0
$$

It follows that h attains an absolute maximum of 27 at -27 and absolute minimum of 0 at 0 .
54. We have $y=x^{3}-2 x+4$, so

$$
\frac{d y}{d x}=3 x^{2}-2=3(x-\sqrt{2 / 3})(x+\sqrt{2 / 3}) .
$$

This is never undefined and is equal to zero when $x= \pm \sqrt{2 / 3}$. Making a sign chart, we see that $\frac{d y}{d x}>0$ on $(-\infty,-\sqrt{2 / 3}) \cup(\sqrt{2 / 3}, \infty)$ and $\frac{d y}{d x}<0$ on $(-\sqrt{2 / 3}, \sqrt{2 / 3})$. Compute that

$$
\begin{aligned}
y(\sqrt{2 / 3}) & =\frac{2}{3} \sqrt{\frac{2}{3}}-2 \sqrt{\frac{2}{3}}+4=-\frac{4}{3} \sqrt{\frac{2}{3}}+4 \\
y(-\sqrt{2 / 3}) & =-\frac{2}{3} \sqrt{\frac{2}{3}}+2 \sqrt{\frac{2}{3}}+4=\frac{4}{3} \sqrt{\frac{2}{3}}+4
\end{aligned}
$$

Thus we have an absolute and local maximum of $\frac{4}{3} \sqrt{\frac{2}{3}}+4$ at $-\sqrt{2 / 3}$ and an absolute and local minimum of $-\frac{4}{3} \sqrt{\frac{2}{3}}+4$ at $\sqrt{2 / 3}$.
58. We want the local and global extrema of $y=x-4 \sqrt{x}$. Notice that the domain of the function in $[0, \infty)$. We compute $\frac{d y}{d x}=1-2 x^{-1 / 2}$. This is undefined at 0 and equal to zero when $x=4$. We compute

$$
\begin{aligned}
& y(0)=0-0=0 \\
& y(4)=4-4 \sqrt{4}=-4
\end{aligned}
$$

Making a sign chart, we see that $\frac{d y}{d x}>0$ on $(4, \infty)$ and $\frac{d y}{d x}<0$ on $(0,4)$. It follows that we have a local and absolute minimum of -4 at 4 and no absolute maximum. We have a local maximum of 0 at 0 .
66. We want the local and global extrema of $y=x^{2} \ln x$. Note that the domain of the function is $(0, \infty)$. We compute

$$
\frac{d y}{d x}=2 x \ln x+x^{2} \cdot \frac{1}{x}=2 x \ln x+x
$$

This is never undefined and is equal to zero when

$$
\begin{array}{r}
2 x \ln x+x=0 \\
x(2 \ln x+1)=0 .
\end{array}
$$

This is zero when $x=0$, but that is not in the domain. It is also equal to zero when $\ln x=-1 / 2$. This is when $x=e^{-1 / 2}$. We compute $y\left(e^{-1 / 2}\right)=-\frac{1}{2} e^{-1}$. Making a sign chart, we see that $\frac{d y}{d x}<0$ on $\left(0, e^{-1 / 2}\right)$ and $\frac{d y}{d x}>0$ on $\left(e^{1 / 2}, \infty\right)$. It follows that we have a local and global minimum of $-\frac{1}{2 e}$ at $e^{-1 / 2}$ and no local or global maximum.
72. Consider $y=x^{2 / 3}\left(x^{2}-4\right)=x^{8 / 3}-4 x^{2 / 3}$. The domain is \mathbb{R}. We compute

$$
\frac{d y}{d x}=\frac{8}{3} x^{5 / 3}-\frac{8}{3} x^{-1 / 3}=\frac{8}{3}\left(\frac{x^{2}-1}{x^{1 / 3}}\right) .
$$

This is undefined at 0 and is equal to zero at ± 1. We compute

$$
\begin{aligned}
y(0) & =0-0 \\
y(1) & =1-4=-3 \\
y(-1) & =1-4=-3
\end{aligned}
$$

Making a sign chart, we see that $\frac{d y}{d x}<0$ on $($ infty,-1$) \cup(0,1)$ and $\frac{d y}{d x}>0$ on $(-1,0) \cup(1, \infty)$. It follows that we have a local maximum of 0 at 0 . We have no absolute maximum. We have local and global maximum of -3 at 1 and -1 .
78. Recall that

$$
|z|= \begin{cases}z & \text { if } z \geq 0 \\ -z & \text { if } z<0\end{cases}
$$

It follows that to understand $f(x)=\left|x^{3}-9 x\right|$, we first need to understand where $x^{3}-9 x$ is positive and where it is negative. We factor

$$
x^{3}-9 x=x(x+3)(x-3)
$$

and see that it is zero at $0,3,-3$ and never undefined. We make a sign chart and see that $x^{3}-9 x<0$ on $(-\infty,-3) \cup(0,3)$ and $x^{3}-9 x>0$ on $(-3,0) \cup(3, \infty)$. It follows that

$$
f(x)= \begin{cases}x^{3}-9 x & \text { if } x \in(-3,0) \cup(3, \infty) \\ -x^{3}+9 x & \text { if } x \in(-\infty,-3) \cup(0,3)\end{cases}
$$

From this, we see that

$$
f^{\prime}(x)= \begin{cases}3 x^{2}-9 & \text { if } x \in(-3,0) \cup(3, \infty) \\ -3 x^{2}+9 & \text { if } x \in(-\infty,-3) \cup(0,3)\end{cases}
$$

The points $0,3,-3$ require more work.
a. As we approach 0 from the left, the slope of the tangent line is -9 . As we approach 0 from the right, the slope of the tangent line is 9 . It follows that we have a corner there, and so $f^{\prime}(0)$ does not exist,
b. As we approach 3 from the left, the slope of the tangent line is $-27+9=-18$. As we approach 3 from the right, the slope of the tangent line is $27-9=18$. As above, we have a corner and so $f^{\prime}(3)$ does not exist.
c. As we approach -3 from the left, the slope of the tangent line is $-27+9=-18$. As we approach from the right, the slope of the tangent line is $27-9=18$. As above, we have a corner and so $f^{\prime}(-3)$ does not exist.

Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, NC 27412 , USA

E-mail address: d_yasaki@uncg.edu
URL: http://www.uncg.edu/~d_yasaki/

