3.5 SOLUTIONS

2. $\frac{d y}{d x}=-3 x^{-2}+5 \cos x$
3. $\frac{d y}{d x}=\frac{1}{2} x^{-1 / 2} \sec x+x^{1 / 2} \sec x \tan x$
4. $\frac{d y}{d x}=2 x \cot x-x^{2} \csc ^{2} x+2 x^{-3}$
5. $\frac{d y}{d x}=-\csc x \cot ^{2} x-\csc ^{3} x$
6. $\frac{d y}{d x}=(\cos x-\sin x) \sec x+(\sin x \cos x) \sec x \tan x$
7.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(1+\sin x)(-\sin x)-\cos ^{2} x}{(1+\sin x)^{2}} \\
& =\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}} \\
& =\frac{-1-\sin x}{(1+\sin x)^{2}} \\
& =\frac{-1}{1+\sin x}
\end{aligned}
$$

18. $\frac{d y}{d x}=-\tan ^{2} x+(2-x)\left(2 \tan x \sec ^{2} x\right)$
19. $\frac{d r}{d \theta}=\sin \theta+\theta \cos \theta-\sin \theta$
20. $\frac{d p}{d q}=\frac{(1+\tan q) \sec ^{2} q-\tan q \sec ^{2} q}{(1+\tan q)^{2}}$
21. We are given $y=1+\cos x$, so $\frac{d y}{d x}=-\sin x$. To find the tangent line, we need the slope and a point. To get the slope, we plug in the x-value in to $\frac{d y}{d x}$.

- $x=-\frac{\pi}{3}$: The slope is $-\sin \left(-\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$. The point is $\left(-\frac{\pi}{3}, 1+\cos \left(-\frac{\pi}{3}\right)\right)=\left(-\frac{\pi}{3}, \frac{3}{2}\right)$. Therefore the tangent line is $y-\frac{3}{2}=\frac{\sqrt{3}}{2}\left(x+\frac{\pi}{3}\right)$.
- $x=\frac{3 \pi}{2}$: The slope is $-\sin \left(\frac{3 \pi}{2}\right)=1$. The point is $\left(\frac{3 \pi}{2}, 1+\cos \left(\frac{3 \pi}{2}\right)=\left(\frac{3 \pi}{2}, 1\right)\right.$. Therefore the tangent line is $y-1=x-\frac{3 \pi}{2}$.

48. We can use direct substitution in computing limits provided there is no division by zero. Therefore

$$
\begin{aligned}
\lim _{x \rightarrow-\pi / 6} \sqrt{1+\cos (\pi \csc x)} & =\sqrt{1+\cos (\pi \csc (-\pi / 6))} \\
& =\sqrt{1+\cos (-2 \pi)} \\
& =\sqrt{1+1} \\
& =\sqrt{2}
\end{aligned}
$$

50. Direct substitution would yield zero in the numerator and denominator. Thus we need to simplify the expression algebraically first. Let $x=\theta-\frac{\pi}{4}$. Then as $\theta \rightarrow \frac{\pi}{4}$, we have $x \rightarrow 0$. We compute

$$
\begin{array}{rlr}
\lim _{\theta \rightarrow \pi / 4} \frac{\tan \theta-1}{\theta-\frac{\pi}{4}} & =\lim _{x \rightarrow 0} \frac{\tan \left(x+\frac{\pi}{4}\right)-1}{x} \\
& =\lim _{x \rightarrow 0}\left(\frac{\tan \left(x+\frac{\pi}{4}\right)-1}{1-x}-1\right) \frac{1}{x} & \text { trig identity } \\
& =\lim _{x \rightarrow 0}\left(\frac{2 \tan x}{1-\tan x}\right) \frac{1}{x} \\
& =\lim _{x \rightarrow 0}\left(\frac{2 \sin x}{\cos x-\sin x}\right) \frac{1}{x} & \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{2}{\cos x-\sin x}\right) \\
& =1 \cdot \frac{2}{1-0} & \text { mult. by } \cos x \\
& =2
\end{array}
$$

54. We compute

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \cos \left(\frac{\pi \theta}{\sin \theta}\right) & \left.=\cos \lim _{\theta \rightarrow 0} \frac{\pi \theta}{\sin \theta}\right) \\
& =\cos (\pi) \\
& =-1
\end{aligned}
$$

58. As we approach 0 from the left the slope of the tangent line is the slope of $x+b$, which is 1 , regardless of the value of b. From the right, the slope of the tangent line is $-\sin (0)=0$. It follows that for any value of b, we will have a corner. In particular, there is no value of b which makes g differentiable at $x=0$.
