Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the 15 questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	6	7	8	Total
Points:	15	12	12	12	12	12	16	9	100
Score:									

1. The accompanying figure shows the velocity $y=v(t)$ in $\mathrm{ft} / \mathrm{sec}$ of a particle moving on a line at time t seconds for $0 \leq t \leq 9$.

(a) (3 points) When is the particle moving backwards?
(b) (3 points) When is the particle speeding up?
(c) (3 points) When is the particle's acceleration positive?
2. (6 points) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable, invertible function. Let $g(x)=f^{-1}(x)$ denote the inverse of f. Fill in the table below with the correct values. Write \mathbf{N} if not enough information is given to compute the value.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	1	2	1	
1	0	3	0	
2	3	4		
3	$\frac{1}{2}$			$\frac{1}{4}$

\qquad out of 15 .
3. (6 points) A rock thrown vertically upward from the surface of the moon at a velocity $24 \mathrm{~m} / \mathrm{sec}$ reaches a height of $s=24 t-0.8 t^{2}$ meters in t seconds. How long does it take for the rock to reach its highest point?
4. (6 points) Find a formula for $\frac{d y}{d x}$ for the curve $x^{3}+y^{3}-9 x y=0$.
\qquad out of 12 .
5. (6 points) Let $f(x)=x \ln (x)$. Compute $f^{\prime}(e)$. Simplify your answer.
6. (6 points) Use logarithmic differentiation to find $\frac{d y}{d x}$ if

$$
y=\frac{\left(x^{2}+1\right)(x+3)^{1 / 2}}{x-1}, \quad x>1 .
$$

\qquad out of 12 .
7. Compute the following.
(a) (3 points) $\sec \left(\cos ^{-1}\left(\frac{1}{2}\right)\right)$
(b) (3 points) $\sin ^{-1}\left(\sin \left(\frac{5 \pi}{6}\right)\right)$
8. (6 points) Compute $\frac{d y}{d t}$, where $y=\sin ^{-1}(1-t)$.
\qquad out of 12 .
9. (6 points) Complete the statement of the First Derivative Test for Local Extrema. Suppose c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c, except possibly at c itself. Moving from left to right,

1. if f^{\prime} changes from negative to positive at c, then f has

2. if f^{\prime} changes from positive to negative at c, then f has

3. if f^{\prime} does not change sign at c, then f has

4. (6 points) Find the absolute maximum and absolute minimum of $g(x)=x e^{x}$ on the interval $-2 \leq x \leq 2$. Justify your answer. Make sure you also specify where the absolute maximum and absolute minimum occur.
\qquad out of 12 .
5. (a) (3 points) Clearly state the hypotheses of the Mean Value Theorem.
(b) (3 points) For what values of a, m, and b does the function

$$
f(x)= \begin{cases}3 & \text { if } x=0 \\ -x^{2}+3 x+a & \text { if } 0<x<1 \\ m x+b & \text { if } 1 \leq x \leq 2\end{cases}
$$

satisfy the hypotheses of the Mean Value Theorem on the interval [0, 2]?
12. Let $f(x)=x^{2}+4 x+1$.
(a) (3 points) What is the average rate of change of f on $[0,2]$?
(b) (3 points) Find c in $(0,2)$ so that $f^{\prime}(c)$ equals the average rate of change you found in part (b).
\qquad out of 12 .
13. (10 points) Answer each question by circling True if it must be true and False if it is ever false. No justification is required.

- True | False: Let f be a differentiable function on \mathbb{R}. If the graph of f is concave up on \mathbb{R}, then f^{\prime} is an increasing function.
- True | False: If f is a differentiable function which has a local maximum at an interior point c of its domain, then $f^{\prime}(c)=0$.
- True | False: If f is a continuous function on \mathbb{R}, then f attains both an absolute maximum and absolute minimum value.
- True | False: Suppose $f^{\prime \prime}$ is continuous on an open interval containing c. If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at $x=c$.
- True \mid False: Let f be an decreasing function. Then $f^{\prime \prime}$ is negative.

14. The graphs below show the first (solid) and second (dashed) derivative of a function $y=f(x)$.

(a) (3 points) Where is the graph of f both increasing and concave down?
(b) (3 points) Identify where the local extrema of f occur. For each, clearly identify whether it corresponds to a local maximum or local minimum.
\qquad out of 16 .
15. Let $f(x)=x^{3}-3 x+3$.
(a) (2 points) Find the critical points of f.
(b) (2 points) Find the intervals where f is increasing.
(c) (2 points) Find all the inflection points $(c, f(c))$ of f. Find the intervals where the graph $y=f(x)$ is concave up and those where it is concave down.
(d) (3 points) Identify all of the local extrema and where they occur. Clearly mark each as a local maximum or local minimum.
\qquad out of 9 .
