Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the 9 questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	6	7	Total
Points:	20	25	9	26	5	9	6	100
Score:								

1. (a) (5 points) If $f(x)$ is a function, give the definition (as a limit) of the derivative of $f(x)$, denoted $f^{\prime}(x)$.

Solution:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(b) (5 points) Let $f(x)=x^{2}+3 x-2$. Use the definition to prove that $f^{\prime}(x)=2 x+3$.

Solution: We compute

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+3(x+h)-2\right)-\left(x^{2}+3 x-2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not x^{2}+2 x h+h^{2}+3 x+3 h-22-\not x^{2}-3 x+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+3 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{\nvdash(2 x+h+3)}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h+3 \\
& =2 x+3 .
\end{aligned}
$$

2. (10 points) Is there a value of a that will make

$$
f(x)= \begin{cases}x+a & \text { if } x<0 \\ \cos (x) & \text { if } x \geq 0\end{cases}
$$

continuous at $x=0$? Justify.

Solution: In order for f to be continuous, we need $\lim _{x \rightarrow 0^{-}} f(x)=f(0)$. We have that $f(0)=\cos (0)=1$ and $\lim _{x \rightarrow 0^{-}}=a$. Therefore, if we pick a to be equal to $1, f$ is continuous.
\qquad out of 20 .
3. (15 points) Match the functions graphed in the first row with their derivatives graphed in the second row. No justification required.

A

D

B

C

D

4. (10 points) Compute the derivative of $f(x)=\tan (x)$ using the definition of $\tan (x)$ in terms of $\sin (x)$ and $\cos (x)$. Simplify to show that $f^{\prime}(x)=\sec ^{2}(x)$.

Solution:

$$
\begin{array}{rlr}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right) & \text { since } \tan (x)=\frac{\sin (x)}{\cos (x)} \\
& =\frac{\cos (x) \cos (x)-\sin (x)(-\sin (x))}{\cos ^{2}(x)} & \text { Quotient Rule } \\
& =\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} & \\
& =\frac{1}{\cos ^{2}(x)} &
\end{array}
$$

\qquad out of 25 .
5. Suppose f and g are differentiable functions whose values are given below.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	$\sqrt{5}$	π
2	1	3	$\sqrt{3}$	e
3	2	1	$\sqrt{2}$	$\ln (3)$

(a) (3 points) If $h(x)=3 f(x)+5 g(x)$, what is $h^{\prime}(2)$?

Solution: We compute using the sum and scalar multiple rule

$$
\begin{aligned}
h^{\prime}(x) & =3 f^{\prime}(x)+5 g^{\prime}(x) \\
h^{\prime}(2) & =3 f^{\prime}(2)+5 g^{\prime}(2) \\
h^{\prime}(2) & =3 \sqrt{3}+5 e .
\end{aligned}
$$

(b) (3 points) If $k(x)=\frac{f(x)}{g(x)}$, what is $k^{\prime}(2)$?

Solution: We compute using the quotient rule

$$
\begin{aligned}
k(x) & =\frac{f(x)}{g(x)} \\
k^{\prime}(x) & =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
k^{\prime}(2) & =\frac{g(2) f^{\prime}(2)-f(2) g^{\prime}(2)}{(g(2))^{2}} \\
k^{\prime}(2) & =\frac{3 \sqrt{3}-1 \cdot e}{3^{2}} \\
k^{\prime}(2) & =\frac{3 \sqrt{3}-e}{9} .
\end{aligned}
$$

(c) (3 points) If $r(x)=f(g(x))$, what is $r^{\prime}(2)$?

Solution: We compute using the chain rule

$$
\begin{aligned}
r(x) & =f(g(x)) \\
r(x) & =f^{\prime}(g(x)) g^{\prime}(x) \\
r(2) & =f^{\prime}(g(2)) g^{\prime}(2) \\
r(2) & =f^{\prime}(3) g^{\prime}(2) \\
r(2) & =\sqrt{2} e
\end{aligned}
$$

\qquad out of 9 .
(d) (3 points) If $p(x)=f(x) g(x)$, what is $p^{\prime}(2)$?

Solution: We compute using the product rule

$$
\begin{aligned}
p(x) & =f(x) g(x) \\
p^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
p^{\prime}(2) & =f^{\prime}(2) g(2)+f(2) g^{\prime}(2) \\
p^{\prime}(2) & =3 \sqrt{3}+e
\end{aligned}
$$

(e) (3 points) If $q(x)=x^{2} g(x)$, what is $q^{\prime}(2)$?

Solution: We compute using the product rule

$$
\begin{aligned}
q(x) & =x^{2} g(x) \\
q^{\prime}(x) & =2 x g(x)+x^{2} g^{\prime}(x) \\
q^{\prime}(2) & =(2 \cdot 2) g(2)+2^{2} \cdot g^{\prime}(2) \\
q^{\prime}(2) & =12+4 e .
\end{aligned}
$$

6. (10 points) Let $f(x)=x^{2}-3 x+5$. Find the equation of the tangent line to $y=f(x)$ at the point $(1,3)$.

Solution: To compute a tangent line, we need a slope and a point. The point is given as $(1,3)$. The slope is $f^{\prime}(1)$. We compute that $f^{\prime}(x)=2 x-3$, so $f^{\prime}(1)=-1$. Therefore the line is

$$
y-3=-(x-1) \quad \text { or equivalently } \quad y=-x+4
$$

7. (10 points) At what points does the graph of $g(x)=x^{3}-3 x$ have horizontal tangents? Be sure to give the x and y coordinates of each point.

Solution: The graph has horizontal tangents where $g^{\prime}(x)=0$. We compute

$$
g^{\prime}(x)=3 x^{2}-3=3(x+1)(x-1) .
$$

It follows that the graph has horizontal tangents where $x=1$ and $x=-1$. We plug in to g and find that the points are $(1,-2)$ and $(-1,2)$.
\qquad out of 26 .
8. (5 points) Compute the average rate of change of $f(x)=x^{3}+1$ over the interval $[2,3]$.

Solution:

$$
\frac{\Delta y}{\Delta x}=\frac{f(3)-f(2)}{3-2}=\frac{28-9}{1}=19 .
$$

\qquad out of 5 .
9. Find the derivatives of the following functions. Use the differentiation rules that apply. You do not have to further simplify the resulting derivative. [This problem continues on the next page.]
(a) (3 points) $f(x)=(3 x-7)^{9}$

Solution: Use the chain rule and power rule to get

$$
f^{\prime}(x)=9(3 x-7)^{8}(3)=27(3 x-7)^{8} .
$$

(b) (3 points) $s(\theta)=\sin (2 \theta-3)$

Solution: Use chain rule to get

$$
s^{\prime}(\theta)=2 \cos (2 \theta-3) .
$$

(c) (3 points) $h(t)=t^{2} e^{\sin (t)}$

Solution: Use product rule and chain rule to get

$$
h^{\prime}(t)=t^{2} e^{\sin (t)} \cos (t)+2 t e^{\sin (t)} .
$$

\qquad out of 9 .
(d) (3 points) $g(x)=\frac{1+\sin (x)}{\cos (x)}$

Solution: We give 2 possible solutions below.
First, use quotient rule to get

$$
\begin{aligned}
g^{\prime}(x) & =\frac{\cos (x) \cos (x)-(1+\sin (x))(-\sin (x))}{\cos ^{2}(x)} \\
& =\frac{\cos ^{2}(x)+\sin (x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1+\sin (x)}{\cos ^{2}(x)} .
\end{aligned}
$$

Method 2 involves rewriting $g(x)$ as

$$
g(x)=\sec (x)+\tan (x) .
$$

Then

$$
g^{\prime}(x)=\sec (x) \tan (x)+\sec ^{2}(x)
$$

(e) (3 points) $y(t)=\sqrt{t}+\frac{1}{2 t}+\frac{1}{t^{3}}+\sqrt{3}+\pi^{e}$

Solution: First rewrite $y(t)$ as

$$
y(t)=t^{1 / 2}+\frac{1}{2} t^{-1}+t^{-3}+\sqrt{3}+\pi^{e} .
$$

Then using power rule (and remembering that constants such as $\sqrt{3}$ and π^{e} have 0 derivative) we compute

$$
y^{\prime}(t)=\frac{1}{2} t^{-1 / 2}-\frac{1}{2} t^{-2}-3 t^{-4} .
$$

\qquad out of 6 .

