Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the 9 questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	6	Total
Points:	20	25	15	25	9	6	100
Score:							

1. (a) (5 points) If $f(x)$ is a function, give the definition (as a limit) of the derivative of $f(x)$, denoted $f^{\prime}(x)$.
(b) (5 points) Let $f(x)=x^{2}+3 x-2$. Use the definition to prove that $f^{\prime}(x)=2 x+3$.
2. (10 points) Is there a value of a that will make

$$
f(x)= \begin{cases}x+a & \text { if } x<0 \\ \cos (x) & \text { if } x \geq 0\end{cases}
$$

continuous at $x=0$? Justify.
\qquad out of 20 .
3. (15 points) Match the functions graphed in the first row with their derivatives graphed in the second row. No justification required.

4. (10 points) Compute the derivative of $f(x)=\tan (x)$ using the definition of $\tan (x)$ in terms of $\sin (x)$ and $\cos (x)$. Simplify to show that $f^{\prime}(x)=\sec ^{2}(x)$.
\qquad out of 25 .
5. Suppose f and g are differentiable functions whose values are given below.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
1	3	2	$\sqrt{5}$	π
2	1	3	$\sqrt{3}$	e
3	2	1	$\sqrt{2}$	$\ln (3)$

(a) (3 points) If $h(x)=3 f(x)+5 g(x)$, what is $h^{\prime}(2)$?
(b) (3 points) If $k(x)=\frac{f(x)}{g(x)}$, what is $k^{\prime}(2)$?
(c) (3 points) If $r(x)=f(g(x))$, what is $r^{\prime}(2)$?
(d) (3 points) If $p(x)=f(x) g(x)$, what is $p^{\prime}(2)$?
(e) (3 points) If $q(x)=x^{2} g(x)$, what is $q^{\prime}(2)$?
\qquad out of 15 .
6. (10 points) Let $f(x)=x^{2}-3 x+5$. Find the equation of the tangent line to $y=f(x)$ at the point $(1,3)$.
7. (10 points) At what points does the graph of $g(x)=x^{3}-3 x$ have horizontal tangents? Be sure to give the x and y coordinates of each point.
8. (5 points) Compute the average rate of change of $f(x)=x^{3}+1$ over the interval $[2,3]$.
\qquad out of 25 .
9. Find the derivatives of the following functions. Use the differentiation rules that apply. You do not have to further simplify the resulting derivative. [This problem continues on the next page.]
(a) (3 points) $f(x)=(3 x-7)^{9}$
(b) (3 points) $s(\theta)=\sin (2 \theta-3)$
(c) (3 points) $h(t)=t^{2} e^{\sin (t)}$
\qquad out of 9 .
(d) (3 points) $g(x)=\frac{1+\sin (x)}{\cos (x)}$
(e) (3 points) $y(t)=\sqrt{t}+\frac{1}{2 t}+\frac{1}{t^{3}}+\sqrt{3}+\pi^{e}$
\qquad out of 6 .

