Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the 11 questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

1. (10 points) Use the Intermediate Value Theorem to show that $f(x)=x^{3}-x^{2}-1$ has a root in the interval [1, 2].

Solution: First note that f is continuous on $[1,2]$. (It is in fact continuous everywhere.) We have that $f(1)=-1$ and $f(2)=8-4-1=3$. Since 0 is between -1 and 3, the Intermediate Value Theorem guarantees the existence of c between 1 and 2 such that $f(c)=0$.
2. (5 points) (Precise definition of limit) Let $f(x)$ be defined on an open interval containing x_{0}, except possibly at x_{0} itself. We say that the limit of $f(x)$ as x approaches x_{0} is L, denoted $\lim _{x \rightarrow x_{0}} f(x)=L$, if

Solution: for every $\epsilon>0$, there exists $\delta>0$ such that for all $x \neq x_{0}$,

$$
0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\epsilon .
$$

3. (5 points) Find a number $\delta>0$ such that every number x in the interval $|x-1|<\delta$ also satisfies $|(8 x-2)-6|<\frac{1}{100}$.

Solution: We have that

$$
|(8 x-2)-6|=|8 x-8|=8|x-1|<\frac{1}{100}
$$

as long as $|x-1|<\frac{1}{800}$. Thus we can choose $\delta=\frac{1}{800}$.
\qquad out of 20 .
4. Let $f(x)=\frac{x^{2}}{2 x-10}$.
(a) (5 points) Evaluate $\lim _{x \rightarrow 5^{-}} f(x)$ and $\lim _{x \rightarrow 5^{+}} f(x)$.

Solution: Note that if we tried to plug in $x=5$, we would get " $\frac{25}{0}$ ". That means the limit is $+\infty,-\infty$, or does not exist. For values x near 5 but less than $5, x^{2}$ is positive and $2 x-10$ is negative. Thus $\frac{x^{2}}{2 x-10}$ is negative for such values. It follows that

$$
\lim _{x \rightarrow 5^{-}} \frac{x^{2}}{2 x-10}=-\infty
$$

For values x near 5 but greater than $5, x^{2}$ is positive and $2 x-10$ is positive. Thus $\frac{x^{2}}{2 x-10}$ is positive for such values. It follows that

$$
\lim _{x \rightarrow 5^{+}} \frac{x^{2}}{2 x-10}=\infty
$$

(b) (5 points) Does the graph $y=f(x)$ have a vertical asymptote? If it does, give the formula for the vertical asymptote. If not, explain why not.

Solution: The only possible place this graph can have a vertical asymptote is where $2 x-10=0$. That means $x=5$ is the only possibility. Since the numerator is not zero when $x=5$, this shows that $x=5$ is indeed a vertical asymptote.
5. Let $f(x)=\frac{3 x^{3}+2 x-13}{7 x^{3}+23 x^{2}+x-1}$.
(a) (5 points) Evaluate $\lim _{x \rightarrow \infty} f(x)$.

Solution: Polynomials are dominated by their leading term. Hence

$$
\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x-13}{7 x^{3}+23 x^{2}+x-1}=\lim _{x \rightarrow \infty} \frac{3 \not x^{\not x}}{7 \not x^{\not x}}=\lim _{x \rightarrow \infty} \frac{3}{7}=\frac{3}{7}
$$

(b) (5 points) Does the graph $y=f(x)$ have a horizontal asymptote? If it does, give the formula for the horizontal asymptote.

Solution: Yes. The horizontal asymptote (from the computation above) is $y=\frac{3}{7}$.
\qquad out of 20 .
6. Evaluate the following limits
(a) (5 points) $\lim _{t \rightarrow-2} \frac{t+2}{t^{2}+3 t+2}$

Solution: Notice that if we plug in $t=-2$, we would get " $\frac{0}{0}$ ". That means we need to do more work. We compute

$$
\lim _{t \rightarrow-2} \frac{t+2}{t^{2}+3 t+2}=\lim _{t \rightarrow-2} \frac{(t+2)}{(t+2)(t+1)}=\lim _{t \rightarrow-2} \frac{1}{t+1}=-1
$$

(b) (5 points) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{3 x}$

Solution:

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{3 x}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{5 \sin (5 x)}{5 x}=\frac{5}{3} \lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} .
$$

Let $\theta=5 x$. As $x \rightarrow 0$, we have $\theta \rightarrow 0$ Then

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

so $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{3 x}=\frac{5}{3}$.
7. (10 points) Suppose f is a function such that $\lim _{x \rightarrow 1} f(x)=2$. Suppose g is a function such that $\lim _{x \rightarrow 1} g(x)=4$. Use Limit Laws to compute $\lim _{x \rightarrow 1}(4 f(x)-\sqrt{g(x)})$.

Solution:

$$
\begin{array}{rlr}
\lim _{x \rightarrow 1}(4 f(x)-\sqrt{g(x)}) & =\lim _{x \rightarrow 1} 4 f(x)-\lim _{x \rightarrow 1} \sqrt{g(x)} & \text { Difference Rule } \\
& =4 \lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} \sqrt{g(x)} & \text { Constant Multiple Rule } \\
& =4 \lim _{x \rightarrow 1} f(x)-\sqrt{\lim _{x \rightarrow 1} g(x)} & \text { Root Rule } \\
& =4(2)-\sqrt{4} & \\
& =6
\end{array}
$$

\qquad out of 20 .
8. (10 points) At what points is the function $f(x)=\frac{x+3}{x^{2}-3 x-10}$ continuous?

Solution: Note that f is a rational function, and so it is continuous on its domain. The domain of a rational function is all real numbers, except the roots of the denominator. Since $x^{2}-3 x-10=(x-5)(x+2)$, we have that f is continuous on

$$
(-\infty,-2) \cup(-2,5) \cup(5, \infty)
$$

9. (10 points) For what value of a is

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<-2 \\ 5 a x & \text { if } x \geq-2\end{cases}
$$

continuous at $x=-2$?

Solution: We have that f is continuous at $x=3$ if $\lim _{x \rightarrow 3} f(x)=f(3)$. We compute $\lim _{x \rightarrow-2^{-}} f(x)=(-2)^{2}+1=5$ and $\lim _{x \rightarrow-2^{+}} f(x)=5 \cdot a \cdot(-2)=-10 a$. It follows that to arrange that f is continuous at $x=3$, we must have $5=-10 a$. Thus choosing $a=-\frac{1}{2}$ will make f continuous at $x=2$.
\qquad out of 20 .
10. (10 points) Suppose f and g are continuous functions such that

$$
\lim _{x \rightarrow 0} f(x)=2, \quad f(7)=-1, \quad \lim _{x \rightarrow 0} g(x)=7, \quad \text { and } \quad g(2)=3 .
$$

Compute $\lim _{x \rightarrow 0} g(f(x))$ or explain what additional information is needed to compute the limit.

Solution: Recall that the composition of continuous functions is continuous so that

$$
\lim _{x \rightarrow 0} g(f(x))=g\left(\lim _{x \rightarrow 0} f(x)\right)=g(2)=3 .
$$

11. The graph of $y=f(x)$ is shown below. Compute the following or explain why it does not exist.

(a) (2 points) $\lim _{x \rightarrow-2^{+}} f(x)$

Solution: As we approach -2 from the right, the height of the graph approaches -3 , so $\lim _{x \rightarrow-2^{+}} f(x)=-3$.
(b) (2 points) $\lim _{x \rightarrow-2^{-}} f(x)$

Solution: As we approach -2 from the left, the height of the graph approaches 4, so $\lim _{x \rightarrow-2^{-}} f(x)=4$
(c) (2 points) $f(-2)$
\qquad out of 20 .

Solution: The height at -2 is -3 , so $f(-2)=-3$.
(d) (2 points) $\lim _{x \rightarrow 4} f(x)$

Solution: As we approach 4 from the left and from the right, the height of the graph approaches 3 , so $\lim _{x \rightarrow 4} f(x)=3$.
(e) (2 points) $\lim _{x \rightarrow 2} f(x)$

Solution: As we approach 2 from the left and from the right, the height of the graph approaches 1 , so $\lim _{x \rightarrow 2} f(x)=1$.
\qquad out of 0 .

