Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the 11 questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

1. (10 points) Use the Intermediate Value Theorem to show that $f(x)=x^{3}-x^{2}-1$ has a root in the interval [1,2].
2. (5 points) (Precise definition of limit) Let $f(x)$ be defined on an open interval containing x_{0}, except possibly at x_{0} itself. We say that the limit of $f(x)$ as x approaches x_{0} is L, denoted $\lim _{x \rightarrow x_{0}} f(x)=L$, if
3. (5 points) Find a number $\delta>0$ such that every number x in the interval $|x-1|<\delta$ also satisfies $|(8 x-2)-6|<\frac{1}{100}$.
\qquad out of 20 .
4. Let $f(x)=\frac{x^{2}}{2 x-10}$.
(a) (5 points) Evaluate $\lim _{x \rightarrow 5^{-}} f(x)$ and $\lim _{x \rightarrow 5^{+}} f(x)$.
(b) (5 points) Does the graph $y=f(x)$ have a vertical asymptote? If it does, give the formula for the vertical asymptote. If not, explain why not.
5. Let $f(x)=\frac{3 x^{3}+2 x-13}{7 x^{3}+23 x^{2}+x-1}$.
(a) (5 points) Evaluate $\lim _{x \rightarrow \infty} f(x)$.
(b) (5 points) Does the graph $y=f(x)$ have a horizontal asymptote? If it does, give the formula for the horizontal asymptote.
\qquad out of 20 .
6. Evaluate the following limits
(a) (5 points) $\lim _{t \rightarrow-2} \frac{t+2}{t^{2}+3 t+2}$
(b) (5 points) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{3 x}$
7. (10 points) Suppose f is a function such that $\lim _{x \rightarrow 1} f(x)=2$. Suppose g is a function such that $\lim _{x \rightarrow 1} g(x)=4$. Use Limit Laws to compute $\lim _{x \rightarrow 1}(4 f(x)-\sqrt{g(x)})$.
\qquad out of 20 .
8. (10 points) At what points is the function $f(x)=\frac{x+3}{x^{2}-3 x-10}$ continuous?
9. (10 points) For what value of a is

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<-2 \\ 5 a x & \text { if } x \geq-2\end{cases}
$$

continuous at $x=-2$?
\qquad out of 20 .
10. (10 points) Suppose f and g are continuous functions such that

$$
\lim _{x \rightarrow 0} f(x)=2, \quad f(7)=-1, \quad \lim _{x \rightarrow 0} g(x)=7, \quad \text { and } \quad g(2)=3
$$

Compute $\lim _{x \rightarrow 0} g(f(x))$ or explain what additional information is needed to compute the limit.
11. The graph of $y=f(x)$ is shown below. Compute the following or explain why it does not exist.

(a) (2 points) $\lim _{x \rightarrow-2^{+}} f(x)$
(b) (2 points) $\lim _{x \rightarrow-2^{-}} f(x)$
(c) (2 points) $f(-2)$
(d) (2 points) $\lim _{x \rightarrow 4} f(x)$
(e) (2 points) $\lim _{x \rightarrow 2} f(x)$
\qquad out of 20 .

