Name:		Academic Integrity Signature:							
Note: Correct nume	<i>I</i> rica	have abided by the UNC answers without just	G A ifica	cadem tion v	<i>tic Integrity Policy.</i> will receive little or no cree	dit.			
1. (6 points) Comp	lete	the Statement of the	Firs	st Der	rivative Test for Local Extr	ema.			
Suppose that c is a		critical point		of a	continuous	function			
f, and that f is		differentiable	at	every	point in some interval con	ntaining c			
except possibly at c itself. Then Moving across this interval from left to right,									
1. if f' changes from negative to positive at c , then									
	f has a local minimum at c								
2. if f' changes from positive to negative at c , then									
f has a local maximum at c									
3. if f' does not	ot cl	hange sign at c , then							
	f has no local extrema at c								
2 (4 points) Comp	lete	the statement of the	Mea	n Val	ue Theorem				

2. (4 points) Complete the statement of the <i>Mean Value Theorem</i> .									
	Suppose f is	continuous	on $[a, b]$ and	differentiable	in the				
	interval's interior (a, b) . Then there is at least one point c in (a, b) at which								

$$\boxed{\frac{f(b) - f(a)}{b - a}} = f'(c).$$