Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy. Note: Correct numerical answers without justification will receive little or no credit.

1. (2 points) (Derivative of logarithm)

$$
\frac{d}{d x}\left(\log _{109}|x|\right)=\frac{1}{\ln (191)} \cdot \frac{1}{x}
$$

2. (2 points) (Derivative of exponential)

$$
\frac{d}{d x}\left(191^{x}\right)=\ln (191) \cdot 191^{x}
$$

3. Consider the curve $x^{2}+x y-y^{2}=1$.
(a) (2 points) Verify that the point $(2,3)$ is on the curve.

Solution: We plug $x=2$ and $y=3$ in to the equation of the curve and verify that we get true.

$$
2^{2}+2 \cdot 3-3^{2}=4-6+9=1
$$

(b) (4 points) Find the equation of the line that is tangent to the curve at $(2,3)$.

Solution: To find a tangent line, we need a slope m and a point on the line. We are given the point $(2,3)$. To find the slope, we need to compute $\frac{d y}{d x}$. Then the slope is $m=\left.\frac{d y}{d x}\right|_{(2,3)}$.
We compute using implicit differentiation

$$
\begin{array}{rlr}
x^{2}+x y-y^{2} & =1 & \\
2 x+x \frac{d y}{d x}+y-2 y \frac{d y}{d x} & =0 & \text { differentiate both sides } \\
4+2 m+3-6 m & =0 & \text { evaluate at }(2,3) \\
-4 m & =-7 & \\
m & =\frac{7}{4} . &
\end{array}
$$

It follows that the tangent line is

$$
y-3=\frac{7}{4}(x-2) .
$$

\qquad out of 10 .

