Name: ______ Academic Integrity Signature: ______ *I have abided by the UNCG Academic Integrity Policy.* Note: Correct numerical answers without justification will receive little or no credit.

1. (2 points) (Derivative of logarithm)

$$\frac{d}{dx} \left(\log_{109} |x| \right) = \boxed{\frac{1}{\ln(191)} \cdot \frac{1}{x}}.$$

2. (2 points) (Derivative of exponential)

$$\frac{d}{dx}\left(191^x\right) = \boxed{\ln(191) \cdot 191^x}$$

- 3. Consider the curve $x^2 + xy y^2 = 1$.
 - (a) (2 points) Verify that the point (2,3) is on the curve.

Solution: We plug x = 2 and y = 3 in to the equation of the curve and verify that we get true. $2^2 + 2 \cdot 3 - 3^2 = 4 - 6 + 9 = 1$

(b) (4 points) Find the equation of the line that is tangent to the curve at (2,3).

Solution: To find a tangent line, we need a slope m and a point on the line. We are given the point (2, 3). To find the slope, we need to compute $\frac{dy}{dx}$. Then the slope is $m = \frac{dy}{dx}\Big|_{(2,3)}$. We compute using implicit differentiation $x^2 + xy - y^2 = 1$ $2x + x\frac{dy}{dx} + y - 2y\frac{dy}{dx} = 0$ differentiate both sides 4 + 2m + 3 - 6m = 0 evaluate at (2,3) -4m = -7 $m = \frac{7}{4}$. It follows that the tangent line is $y - 3 = \frac{7}{4}(x - 2)$.