Name: _____

___ Academic Integrity Signature:

I have abided by the UNCG Academic Integrity Policy.

Note: Correct numerical answers without justification will receive little or no credit.

1. (2 points) Compute $\lim_{t \to 0} \frac{\sin(7t)}{t}$.

Solution: Recall that we proved in class that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$. To compute given limit, multiply the numerator and denominator by 7. Then let $\theta = 7t$. Then as $x \to 0$, we have $\theta \to 0$.

$$\lim_{t \to 0} \frac{\sin(7t)}{t} = \lim_{t \to 0} \frac{7\sin(7t)}{7t}$$
$$= 7\lim_{t \to 0} \frac{\sin(7t)}{7t}$$
$$= 7\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}$$
Let $\theta = 7t$.
$$= 7 \cdot 1$$
$$= 7.$$

2. (3 points) (Definition) A function f is *continuous* at an interior point c of its domain if

Solution:	
	$\lim_{x \to c} f(x) = f(c).$

3. (5 points) Complete the statement of the Intermediate Value Theorem.

Let f be a	function on the interval $[a, b]$. Let y_0 be any
value between and .	Then there exists a c between and
such that	

Solution: Let f be a continuous function on the interval [a, b]. Let y_0 be any value between f(a) and f(b). Then there exists a c between a and b such that $f(c) = y_0$.