Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.
Note: Correct numerical answers without justification will receive little or no credit.

1. (2 points) Compute $\lim _{t \rightarrow 0} \frac{\sin (7 t)}{t}$.

Solution: Recall that we proved in class that $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$. To compute given limit, multiply the numerator and denominator by 7 . Then let $\theta=7 t$. Then as $x \rightarrow 0$, we have $\theta \rightarrow 0$.

$$
\begin{array}{rlr}
\lim _{t \rightarrow 0} \frac{\sin (7 t)}{t} & =\lim _{t \rightarrow 0} \frac{7 \sin (7 t)}{7 t} \\
& =7 \lim _{t \rightarrow 0} \frac{\sin (7 t)}{7 t} & \\
& =7 \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} & \text { Let } \theta=7 t . \\
& =7 \cdot 1 & \\
& =7 . &
\end{array}
$$

2. (3 points) (Definition) A function f is continuous at an interior point c of its domain if

Solution:

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

3. (5 points) Complete the statement of the Intermediate Value Theorem.

Solution: Let f be a continuous function on the interval $[a, b]$. Let y_{0} be any value between $f(a)$ and $f(b)$. Then there exists a c between a and b such that $f(c)=y_{0}$.
\qquad out of 10 .

