Name:

_____ Academic Integrity Signature: ____

I have abided by the UNCG Academic Integrity Policy.

Note: Correct numerical answers without justification will receive little or no credit.

1. (3 points) Let f be a differentiable function. Newton's method produces a sequence x_1, x_2, x_3, \ldots of approximate solutions to f(x) = 0 given an initial guess x_0 . Complete the formula for computing this sequence.

2. (3 points) The graph of $f(x) = x^3 - x + 1$ is shown below. Estimate the real root of f using one iteration of Newton's method with initial guess $x_0 = -1$. i.e. Compute x_1 .

Solution: We compute $f'(x) = 3x^2 - 1$, and so $f'(x_0) = f'(-1) = 2$. Furthermore, $f(x_0) = f(-1) = 1$. Then

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -1 - \frac{1}{2} = -\frac{3}{2}.$$

- 3. A 216 m² rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of the two sides.
 - (a) (2 points) Define some variables, and label them on the picture below. Find a formula for the length F of fencing required.

(b) (2 points) Rewrite the formula for F so that it is a function of one variable. Use the constraints to find the domain of F.

Solution: The constraint is that the area is 216 m². It follows that xy = 216. First, we can solve for y to get $y = \frac{216}{x}$. This will help write F as a function of x

$$F = 3(\frac{216}{x}) + 2x = \frac{648}{x} + 2x.$$

Second, we can "see" the domain. Since xy = 216 and x represents the length of one of the sides, we have the domain $0 < x < \infty$.