Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.
Note: Correct numerical answers without justification will receive little or no credit.

1. (3 points) The graph of $y=f(x)$ is shown below. Compute $\lim _{x \rightarrow 2} f(x)$, or explain why it does not exist.

Solution: Notice that the height of the graph approaches 1 as the x approaches 2 from either side. (The actual value of $f(2)$ does not affect the limit.) Thus $\lim _{x \rightarrow 2} f(x)=1$.
2. (2 points) Compute $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$.

Solution:

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}=\lim _{x \rightarrow 1} \frac{(x+2)(x-1)}{(x-1)}=\lim _{x \rightarrow 1}(x+2)=3 .
$$

3. (2 points) Compute $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x+1}$.

Solution:

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x+1}=\frac{1^{2}+1-2}{1+1}=0 .
$$

\qquad out of 7 .
4. (3 points) (Precise definition of limit) Let $f(x)$ be defined on an open interval containing x_{0}, except possibly at x_{0} itself. We say that the limit of $f(x)$ as x approaches x_{0} is L, denoted $\lim _{x \rightarrow x_{0}} f(x)=L$, if

Solution: for every $\epsilon>0$, there exists $\delta>0$ such that for all $x \neq x_{0}$,

$$
0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\epsilon .
$$

\qquad out of 3 .

