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Page: 1 2 3 4 5 Total

Points: 32 13 25 14 16 100

Score:



MAT 191 Test 2 October 9, 2012

1. (a) (5 points) If f(x) is a function, give the definition of the derivative of f(x).

Solution:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(b) (5 points) Suppose f(x) =
1

x
. Use the definition to compute the derivative of

f(x).

Solution: We compute

f ′(x) = lim
h→0

1
x+h
− 1

x

h

= lim
h→0

1

h

(
1

x+ h
− 1

x

)
= lim

h→0

1

h

(
x− (x+ h)

x(x+ h)

)
= lim

h→0

1

��h

(
��h

x(x+ h)

)
= lim

h→0

1

��h

(
−��h
x+ h

)
= lim

h→0

−1

x(x+ h)

=
−1

x2

2. (10 points) Find the value of a that makes the following function differentiable.

f(x) =

{
ax if x < 0,

x2 + 3x− 2 if x ≥ 0.

Solution: There is an error in the question as stated. One needs to replace ax by
ax− 2. For this reason, everyone was given full credit on the question.

With the correction above made, this is how you would approach the problem. From
the left, the slope of the tangent line at 0 is a. From the right, the slope of the
tangent line is 2x+ 3 evaluated x = 0, which yields 3. Therefore we want a = 3.

3. (12 points) Match the functions graphed in the first row with their derivatives graphed
in the second row.
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Solution: C A D B

4. (10 points) Find the derivative of f(x) = sec(x) using the definition of sec(x) in terms
of cos(x). Simplify to show that f ′(x) = sec(x) tan(x).

Solution: Note that sec(x) = 1
cos(x)

. We compute the derivative using the chain rule

(and power rule).

f ′(x) =
d

dx

(
cos(x)−1

)
= (−1) cos(x)−2(− sin(x))

=
sin(x)

cos2(x)

=
1

cos(x)
· sin(x)

cos(x)

= sec(x) tan(x).

5. Suppose the height of an object at t seconds is s(t) = −t2 + 2t+ 8 ft.

(a) (3 points) What is the object’s velocity? Give the units in which it is measured.
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Solution: The velocity in ft/sec is

v(t) = −2t+ 2.

(b) (3 points) What is the object’s acceleration? Give the units in which it is measured.

Solution: The acceleration in ft/sec2 is

a(t) = −2.

(c) (3 points) At what time does the object reach it’s maximum height? Be sure to
include the units.

Solution: When the object is at maximum height, its velocity is 0 ft/sec. We
solve −2t+ 2 = 0, and see that the object is at maximum height at t = 1 sec.

(d) (3 points) What is the object’s maximum height? Be sure to include the units.

Solution: To get the maximum height, we compute s(1) = −12 + 2(1) + 8 = 9
ft.

6. (11 points) Suppose y2 − y = x3 − x. Find dy
dx

when (x, y) = (2, 3).

Solution: Use implicit differentiation to get

2y
dy

dx
− dy

dx
= 3x2 − 1.

Plug in x = 2, y = 3 to get

2(3)
dy

dx
− dy

dx
= 3(22)− 1

6
dy

dx
− dy

dx
= 12− 1

5
dy

dx
= 11

dy

dx
=

11

5
.
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7. Suppose f and g are differentiable functions whose values are given below.

x f(x) g(x) f ′(x) g′(x)

1 3 2
√

5 π

2 1 3
√

7 e

3 2 1
√

11 ln(7)

(a) (5 points) If h(x) = 7f(x) + 5g(x), what is h′(2)?

Solution: We compute using the sum and scalar multiple rule

h′(x) = 7f ′(x) + 5g′(x)

h′(2) = 7f ′(2) + 5g′(2)

h′(2) = 7
√

7 + 5e.

(b) (5 points) If k(x) =
f(x)

g(x)
, what is k′(2)?

Solution: We compute using the quotient rule

k(x) =
f(x)

g(x)

k′(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))2

k′(2) =
g(2)f ′(2)− f(2)g′(2)

(g(2))2

k′(2) =
3
√

7− 1 · e
32

k′(2) =
3
√

7− e
9

(c) (5 points) If r(x) = f(g(x)), what is r′(2)?
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Solution: We compute using the chain rule

r(x) = f(g(x))

r(x) = f ′(g(x))g′(x)

r(2) = f ′(g(2))g′(2)

r(2) = f ′(3)g′(2)

r(2) =
√

11e

8. Find the derivatives of the following functions. Use the differentiation rules that apply.
You do not have to further simplify the resulting derivative. [This problem continues on
the next page.]

(a) (4 points) f(x) = (2x− 7)9

Solution: Use the chain rule and power rule to get

f ′(x) = 9(2x− 7)8(2) = 18(2x− 7)8.

(b) (4 points) s(θ) = sin(2θ)

Solution: Use chain rule to get

s′(θ) = 2 cos(2θ).

(c) (4 points) h(t) = t2esin(t)

Solution: Use product rule and chain rule to get

h′(t) = t2esin(t) cos(t) + 2tesin(t).

(d) (4 points) g(x) =
1 + sin(x)

cos(x)

Solution: We give 2 possible solutions below.

First, use quotient rule to get
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g′(x) =
cos(x) cos(x)− (1 + sin(x))(− sin(x))

cos2(x)

=
cos2(x) + sin(x) + sin2(x)

cos2(x)

=
1 + sin(x)

cos2(x)
.

Method 2 involves rewriting g(x) as

g(x) = sec(x) + tan(x).

Then
g′(x) = sec(x) tan(x) + sec2(x).

(e) (4 points) y(t) =
√
t+

1

2t
+

1

t3
+
√

3 + πe

Solution: First rewrite y(t) as

y(t) = t1/2 +
1

2
t−1 + t−3 +

√
3 + πe.

Then using power rule (and remembering that constants have 0 derivative) we
compute

y′(t) =
1

2
t−1/2 − 1

2
t−2 − 3t−4.
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