Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	2	3	4	5	Total
Points:	25	25	25	25	100
Score:					

1. (15 points) Let $f(x)=x^{3}+2 x-3$. Find the average rate of change of $f(x)$ over the interval [1, 2].

Solution: We compute $f(2)=2^{3}+2 \cdot 2-3=9$ and $f(1)=1^{3}+2 \cdot 1-3=0$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{f(2)-f(1)}{2-1} \\
& =\frac{9-0}{1} \\
& =9 .
\end{aligned}
$$

2. (10 points) Use the Intermediate Value Theorem to show that $x-\cos (x)=0$ at some point x in the interval $\left[0, \frac{\pi}{2}\right]$.

Solution: First note that $f(x)=2 x-\cos (x)$ is continuous on $\left[0, \frac{\pi}{2}\right]$. (It is in fact continuous everywhere.) We have that $f(0)=0-\cos (0)=-1$ and $f\left(\frac{\pi}{2}\right)=\left(\frac{\pi}{2}\right)^{2}-$ $\cos \left(\frac{\pi}{2}\right)=\left(\frac{\pi}{2}\right)^{2}$. Since 0 is between -1 and $\left(\frac{\pi}{2}\right)^{2}$, the Intermediate Value Theorem guarantees the existence of c between 0 and $\frac{\pi}{2}$ such that $f(c)=0$.
\qquad out of 25 .
3. (15 points) Answer the following questions about $f(x)$. The entire graph of $f(x)$ is shown here. The axes that are shown are the x and y axes.

(a) What is $\lim _{x \rightarrow-2^{+}} f(x)$?

Solution: $\lim _{x \rightarrow-2^{+}} f(x)=2$
(b) What is $\lim _{x \rightarrow-1^{-}} f(x)$?

Solution: $\lim _{x \rightarrow-1^{-}} f(x)=1$
(c) What is $\lim _{x \rightarrow-1} f(x)$?

Solution: $\lim _{x \rightarrow-1} f(x)=1$
(d) What is $\lim _{x \rightarrow 1^{+}} f(x)$?

Solution: $\lim _{x \rightarrow-1} f(x)=2$
(e) Does $\lim _{x \rightarrow 1} f(x)$ exist? Explain.

Solution: No, since the left hand and right hand limits do not agree.
(f) Is $f(x)$ continuous at $x=-1$? Explain.

Solution: No, since the function is not defined at -1 .
(g) Is $f(x)$ continuous at $x=0$? Explain.

Solution: Yes. The left and right hand limits are both 1.5 , which is equal to $f(0)$.
(h) Is $f(x)$ continuous at $x=1$? Explain.

Solution: No, since the left and right hand limits do not agree.
4. (10 points) Find a number δ so that every number x in the interval $\left|x-\frac{1}{2}\right|<\delta$ also satisfies $|(6 x-2)-1|<\frac{1}{10}$. Note: The definition of $\lim _{x \rightarrow \frac{1}{2}}(6 x-2)=1$ tells you that you can solve this problem.
\qquad out of 25 .
(Hint: Work backwards to find δ. You want $|(6 x-2)-1|<\frac{1}{10}$, so figure out which x-values make this true.)

Solution: We have that

$$
\begin{aligned}
|(6 x-2)-1| & =|6 x-3| \\
& =6\left|x-\frac{1}{2}\right| \\
& <\frac{1}{10}
\end{aligned}
$$

as long as $\left|x-\frac{1}{2}\right|<\frac{1}{60}$. Thus we can choose $\delta=\frac{1}{60}$.
5. (15 points) Let $f(x)=\frac{x^{2}}{2 x-10}$.
(a) Evaluate $\lim _{x \rightarrow 5^{-}} f(x)$.

Solution: Note that if we tried to plug in $x=5$, we would get " $\frac{25}{0}$ ". That means the limit is $+\infty,-\infty$, or does not exist. For values x near 5 but less than $5, x^{2}$ is positive and $2 x-10$ is negative. Thus $\frac{x^{2}}{2 x-10}$ is negative for such values. It follows that

$$
\lim _{x \rightarrow 5^{-}} \frac{x^{2}}{2 x-10}=-\infty
$$

(b) Evaluate $\lim _{x \rightarrow 5^{+}} f(x)$.

Solution: Note that if we tried to plug in $x=5$, we would get " $\frac{25}{0}$ ". That means the limit is $\infty,-\infty$, or does not exist. For values x near 5 but greater than $5, x^{2}$ is positive and $2 x-10$ is positive. Thus $\frac{x^{2}}{2 x-10}$ is positive for such values. It follows that

$$
\lim _{x \rightarrow 5^{-}} \frac{x^{2}}{2 x-10}=\infty
$$

(c) Does the graph $y=f(x)$ have a vertical asymptote? If it does, give the formula for the vertical asymptote.

Solution: The only possible place this graph can have a vertical asymptote is where $2 x-10=0$. That means $x=5$. The computations above show that $x=5$ is indeed a vertical asymptote.
6. (10 points) Let $f(x)=\frac{3 x^{2}+2 x-13}{7 x^{3}+23 x^{2}+x-1}$.
(a) Evaluate $\lim _{x \rightarrow \infty} f(x)$.
\qquad out of 25 .

Solution: Polynomials are dominated by their leading term. Hence

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-13}{7 x^{3}+23 x^{2}+x-1} & =\lim _{x \rightarrow \infty} \frac{3 x^{\not 2}}{7 x^{\not 又 1}} \\
& =\lim _{x \rightarrow \infty} \frac{3}{7 x} \\
& =0
\end{aligned}
$$

(b) Does the graph $y=f(x)$ have a horizontal asymptote? If it does, give the formula for the horizontal asymptote.

Solution: Yes. The horizontal asymptote (from the computation above) is $y=0$.
7. (15 points) Evaluate the following limits
(a) $\lim _{y \rightarrow-1} \frac{y+1}{y^{2}+3 y+2}$

Solution: Notice that if we plug in $y=-1$, we would get " $\frac{0}{0}$. . That means we need to do more work. We compute

$$
\begin{aligned}
\lim _{y \rightarrow-1} \frac{y+1}{y^{2}+3 y+2} & =\lim _{y \rightarrow-1} \frac{(y+1)}{(y+1)(y+2)} \\
& =\lim _{y \rightarrow-1} \frac{1}{y+2} \\
& =1
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0^{+}} \frac{x+2-\sqrt{x}}{\cos (x)}$

Solution: Since all the functions involved are continuous at 0 , we can compute the limit by just plugging in $x=0$. Thus the limit is $\frac{0+2-\sqrt{0}}{\cos (0)}=\frac{2}{1}=2$.
8. (10 points) For what value of a is

$$
f(x)= \begin{cases}x^{2}+3 & \text { if } x<3 \\ 2 a x & \text { if } x \geq 3\end{cases}
$$

continuous at $x=3$?

Solution: We have that f is continuous at $x=3$ if $\lim _{x \rightarrow 3} f(x)=f(3)$. We compute $\lim _{x \rightarrow 3^{-}} f(x)=3^{2}+3=12$ and $\lim _{x \rightarrow 3^{+}} f(x)=2 \cdot a \cdot 3=6 a$. It follows that to arrange that f is continuous at $x=3$, we must have $12=6 a$. Thus choosing $a=2$ will make f continuous at $x=3$.
\qquad out of 25 .

