Name: _

_____ Academic Integrity Signature: ______ I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	2	3	4	5	Total
Points:	25	25	25	25	100
Score:					

1. (15 points) Let $f(x) = x^3 + 2x - 3$. Find the average rate of change of f(x) over the interval [1, 2].

Solution: We compute $f(2) = 2^3 + 2 \cdot 2 - 3 = 9$ and $f(1) = 1^3 + 2 \cdot 1 - 3 = 0$

$$\frac{\Delta y}{\Delta x} = \frac{f(2) - f(1)}{2 - 1}$$
$$= \frac{9 - 0}{1}$$
$$= 9.$$

2. (10 points) Use the Intermediate Value Theorem to show that $x - \cos(x) = 0$ at some point x in the interval $[0, \frac{\pi}{2}]$.

Solution: First note that $f(x) = 2x - \cos(x)$ is continuous on $[0, \frac{\pi}{2}]$. (It is in fact continuous everywhere.) We have that $f(0) = 0 - \cos(0) = -1$ and $f(\frac{\pi}{2}) = (\frac{\pi}{2})^2 - \cos(\frac{\pi}{2}) = (\frac{\pi}{2})^2$. Since 0 is between -1 and $(\frac{\pi}{2})^2$, the Intermediate Value Theorem guarantees the existence of c between 0 and $\frac{\pi}{2}$ such that f(c) = 0.

3. (15 points) Answer the following questions about f(x). The entire graph of f(x) is shown here. The axes that are shown are the x and y axes.

- (e) Does lim f(x) exist? Explain.
 Solution: No, since the left hand and right hand limits do not agree.
- (f) Is f(x) continuous at x = -1? Explain.
 Solution: No, since the function is not defined at -1.
- (g) Is f(x) continuous at x = 0? Explain.
 Solution: Yes. The left and right hand limits are both 1.5, which is equal to f(0).
- (h) Is f(x) continuous at x = 1? Explain.

Solution: No, since the left and right hand limits do not agree.

4. (10 points) Find a number δ so that every number x in the interval $|x - \frac{1}{2}| < \delta$ also satisfies $|(6x - 2) - 1| < \frac{1}{10}$. Note: The definition of $\lim_{x \to \frac{1}{2}} (6x - 2) = 1$ tells you that you can solve this problem.

Page 3 of 5

Points earned: _____ out of 25.

(Hint: Work backwards to find δ . You want $|(6x - 2) - 1| < \frac{1}{10}$, so figure out which x-values make this true.)

Solution: We have that

$$(6x - 2) - 1| = |6x - 3|$$

= $6|x - \frac{1}{2}|$
< $\frac{1}{10}$

as long as $|x - \frac{1}{2}| < \frac{1}{60}$. Thus we can choose $\delta = \frac{1}{60}$.

5. (15 points) Let $f(x) = \frac{x^2}{2x - 10}$.

(a) Evaluate
$$\lim_{x \to 5^-} f(x)$$
.

Solution: Note that if we tried to plug in x = 5, we would get $\frac{25}{0}$. That means the limit is $+\infty$, $-\infty$, or does not exist. For values x near 5 but less than 5, x^2 is positive and 2x - 10 is negative. Thus $\frac{x^2}{2x - 10}$ is negative for such values. It follows that x^2

$$\lim_{x \to 5^{-}} \frac{x}{2x - 10} = -\infty.$$

(b) Evaluate $\lim_{x\to 5^+} f(x)$.

Solution: Note that if we tried to plug in x = 5, we would get $\frac{25}{0}$. That means the limit is ∞ , $-\infty$, or does not exist. For values x near 5 but greater than 5, x^2 is positive and 2x - 10 is positive. Thus $\frac{x^2}{2x - 10}$ is positive for such values. It follows that $\lim_{x \to \infty} \frac{x^2}{2x - 10} = \infty$

$$\lim_{x \to 5^{-}} \frac{x}{2x - 10} = \infty.$$

(c) Does the graph y = f(x) have a vertical asymptote? If it does, give the formula for the vertical asymptote.

Solution: The only possible place this graph can have a vertical asymptote is where 2x - 10 = 0. That means x = 5. The computations above show that x = 5 is indeed a vertical asymptote.

6. (10 points) Let
$$f(x) = \frac{3x^2 + 2x - 13}{7x^3 + 23x^2 + x - 1}$$
.
(a) Evaluate $\lim_{x \to \infty} f(x)$.

Solution: Polynomials are dominated by their leading term. Hence

$$\lim_{x \to \infty} \frac{3x^2 + 2x - 13}{7x^3 + 23x^2 + x - 1} = \lim_{x \to \infty} \frac{3x^2}{7x^{31}}$$
$$= \lim_{x \to \infty} \frac{3}{7x}$$
$$= 0$$

(b) Does the graph y = f(x) have a horizontal asymptote? If it does, give the formula for the horizontal asymptote.

Solution: Yes. The horizontal asymptote (from the computation above) is y = 0.

7. (15 points) Evaluate the following limits

(a)
$$\lim_{y \to -1} \frac{y+1}{y^2+3y+2}$$

Solution: Notice that if we plug in y = -1, we would get $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$. That means we need to *do more work*. We compute

$$\lim_{y \to -1} \frac{y+1}{y^2 + 3y + 2} = \lim_{y \to -1} \frac{(y+1)}{(y+1)(y+2)}$$
$$= \lim_{y \to -1} \frac{1}{y+2}$$
$$= 1.$$

(b) $\lim_{x \to 0^+} \frac{x + 2 - \sqrt{x}}{\cos(x)}$

Solution: Since all the functions involved are continuous at 0, we can compute the limit by just plugging in x = 0. Thus the limit is $\frac{0+2-\sqrt{0}}{\cos(0)} = \frac{2}{1} = 2$.

8. (10 points) For what value of a is

$$f(x) = \begin{cases} x^2 + 3 & \text{if } x < 3, \\ 2ax & \text{if } x \ge 3 \end{cases}$$

continuous at x = 3?

Solution: We have that f is continuous at x = 3 if $\lim_{x \to 3} f(x) = f(3)$. We compute $\lim_{x \to 3^-} f(x) = 3^2 + 3 = 12$ and $\lim_{x \to 3^+} f(x) = 2 \cdot a \cdot 3 = 6a$. It follows that to arrange that f is continuous at x = 3, we must have 12 = 6a. Thus choosing a = 2 will make f continuous at x = 3.