Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.

Read all of the following information before starting the exam:

- It is to your advantage to answer ALL of the questions.
- It is your responsibility to make sure that you have all of the problems.
- There is no need to complete the test in order. The problems are independent.
- Duey has evil level 3, Pepsi has evil level 4, and Rusty has evil level 9.
- Correct numerical answers with insufficient justification may receive little or no credit.
- Clearly distinguish your final answer from your scratch work with a box or circle.
- Budget your time!
- If you have read all of these instructions, draw a happy face here.

Page:	1	2	3	4	5	Total
Points:	25	15	25	25	10	100
Score:						

1. (15 points) Let $f(x)=x^{3}+2 x-3$. Find the average rate of change of $f(x)$ over the interval [1, 2].
2. (10 points) Use the Intermediate Value Theorem to show that $x-\cos (x)=0$ at some point x in the interval $\left[0, \frac{\pi}{2}\right]$.
\qquad out of 25 .
3. (15 points) Answer the following questions about $f(x)$. The entire graph of $f(x)$ is shown here. The axes that are shown are the x and y axes.

(a) What is $\lim _{x \rightarrow-2^{+}} f(x)$?
(b) What is $\lim _{x \rightarrow-1^{-}} f(x)$?
(c) What is $\lim _{x \rightarrow-1} f(x)$?
(d) What is $\lim _{x \rightarrow 1^{+}} f(x)$?
(e) Does $\lim _{x \rightarrow 1} f(x)$ exist? Explain.
(f) Is $f(x)$ continuous at $x=-1$? Explain.
(g) Is $f(x)$ continuous at $x=0$? Explain.
(h) Is $f(x)$ continuous at $x=1$? Explain.
\qquad out of 15 .
4. (10 points) Find a number δ so that every number x in the interval $\left|x-\frac{1}{2}\right|<\delta$ also satisfies $|(6 x-2)-1|<\frac{1}{10}$. Note: The definition of $\lim _{x \rightarrow \frac{1}{2}}(6 x-2)=1$ tells you that you can solve this problem.
(Hint: Work backwards to find δ. You want $|(6 x-2)-1|<\frac{1}{10}$, so figure out which x-values make this true.)
5. (15 points) Let $f(x)=\frac{x^{2}}{2 x-10}$.
(a) Evaluate $\lim _{x \rightarrow 5^{-}} f(x)$.
(b) Evaluate $\lim _{x \rightarrow 5^{+}} f(x)$.
(c) Does the graph $y=f(x)$ have a vertical asymptote? If it does, give the formula for the vertical asymptote.
\qquad out of 25 .
6. (10 points) Let $f(x)=\frac{3 x^{2}+2 x-13}{7 x^{3}+23 x^{2}+x-1}$.
(a) Evaluate $\lim _{x \rightarrow \infty} f(x)$.
(b) Does the graph $y=f(x)$ have a horizontal asymptote? If it does, give the formula for the horizontal asymptote.
7. (15 points) Evaluate the following limits
(a) $\lim _{y \rightarrow-1} \frac{y+1}{y^{2}+3 y+2}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{x+2-\sqrt{x}}{\cos (x)}$
\qquad out of 25 .
8. (10 points) For what value of a is

$$
f(x)= \begin{cases}x^{2}+3 & \text { if } x<3 \\ 2 a x & \text { if } x \geq 3\end{cases}
$$

continuous at $x=3$?
\qquad out of 10 .

