Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.
Note: Correct numerical answers without justification will receive little or no credit.

1. (5 points) State The Extreme Value Theorem. If f is \square a closed interval $[a, b]$, then

Solution: If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum and an absolute minimum on $[a, b]$.
2. (5 points) State the Mean Value Theorem. If f is
 closed interval $[a, b]$ and \square then there is at least one point c in (a, b) at which

Solution: If f is continuous on a closed interval $[a, b]$ and differentiable on the interval's interior (a, b) then there is at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

\qquad out of 10 .

