Nam	ne: Academic Integrity Signature:
	I have abided by the UNCG Academic Integrity Policy.
Not	te: Correct numerical answers without justification will receive little or no credit.
1.	(5 points) State The Extreme Value Theorem. If f is
	a closed interval [a b] then
	a closed interval $[a, b]$, then
	Solution: If f is continuous on a closed interval $[a, b]$, then f attains an absolute
	maximum and an absolute minimum on $[a, b]$.
2.	(5 points) State the Mean Value Theorem. If f is
	(° F°)
	closed interval $[a, b]$ and on the interval's interior (a, b)
	closed interval $[a, b]$ and
	then there is at least one point c in (a, b) at which
	Solution: If f is continuous on a closed interval $[a, b]$ and differentiable on the
	interval's interior (a, b) then there is at least one point c in (a, b) at which
	C(I) $C(I)$
	$f'(c) = \frac{f(b) - f(a)}{b - a}.$
	o-a