Name: \qquad Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.
Note: Correct numerical answers without justification will receive little or no credit.

1. (3 points) What is $\frac{d}{d x}\left(\cos ^{-1}(u)\right)$?

Solution: $\frac{-1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$, for $|u|<1$
2. (3 points) What is $\frac{d}{d x}\left(\tan ^{-1}(u)\right)$?

Solution: $\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}$
3. (4 points) A cylindrical tank of radius 10 feet and height 100 feet is filled with water. How fast is the water level changing if the tank is drained at a constant rate of $2 \mathrm{ft}^{3} / \mathrm{min}$.

Solution: Let V denote the volume of water, then the height is h. The problem asks us to compute $\frac{d h}{d t}$ assuming $\frac{d V}{d t}=-2$. Note the minus sign since the volume is getting smaller.
First we relate the volume and height by $V=100 \pi h$ (since in general the volume of a cylinder of radius r and height h is $V=\pi r^{2} h$.) Differentiate both sides with respect to t, then plug in the value for $\frac{d V}{d t}$ and solve for $\frac{d h}{d t}$.

$$
\begin{aligned}
V & =100 \pi h \\
\frac{d V}{d t} & =100 \pi \frac{d h}{d t} \\
-2 & =100 \pi \frac{d h}{d t} \\
\frac{-1}{50 \pi} & =\frac{d h}{d t}
\end{aligned}
$$

Thus the water level is changing at $\frac{-1}{50 \pi} \mathrm{ft} / \mathrm{min}$. Equivalently water level is falling at $\frac{1}{50 \pi} \mathrm{ft} / \mathrm{min}$.
\qquad out of 10 .

