Name: $\qquad$ Academic Integrity Signature:
I have abided by the UNCG Academic Integrity Policy.
Note: Correct numerical answers without justification will receive little or no credit.

1. (5 points) (The Chain Rule) If $f$ is differentiable at $u=g(x)$ and $g$ is differentiable at $x$, then the composite $f \circ g$ is differentiable at $x$, and the derivative is

$$
(f \circ g)^{\prime}(x)=\square \text {. }
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\square
$$

where $\frac{d y}{d u}$ is evaluated at $u=g(x)$.

## Solution:

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

where $\frac{d y}{d u}$ is evaluated at $u=g(x)$.
2. (5 points) (Computation) Suppose $f$ and $g$ are differentiable functions whose values are given below. Let $h(x)=f(g(x))$. Compute $h^{\prime}(2)$.

| $x$ | $f(x)$ | $g(x)$ | $f^{\prime}(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 2 | 11 | -3 |
| 2 | 1 | 3 | $\pi$ | 7 |
| 3 | 1 | 1 | $\sqrt{2}$ | $-\frac{1}{9}$ |

Solution: We compute

$$
\begin{aligned}
h^{\prime}(2) & =f^{\prime}(g(2)) g^{\prime}(2) \\
& =f^{\prime}(3) g^{\prime}(2) \\
& =\sqrt{2} \cdot 7 \\
& =7 \sqrt{2} .
\end{aligned}
$$

$\qquad$ out of 10 .

