Name: _

____ Academic Integrity Signature: ___

I have abided by the UNCG Academic Integrity Policy.

Note: Correct numerical answers without justification will receive little or no credit.

1. (5 points) (The Chain Rule) If f is differentiable at u = g(x) and g is differentiable at x, then the composite $f \circ g$ is differentiable at x, and the derivative is

$$(f \circ g)'(x) =$$

In Leibniz's notation, if y = f(u) and u = g(x), then

where $\frac{dy}{du}$ is evaluated at u = g(x).

Solution:

$$(f \circ g)'(x) = f'(g(x))g'(x).$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx},$$

where $\frac{dy}{du}$ is evaluated at u = g(x).

2. (5 points) (Computation) Suppose f and g are differentiable functions whose values are given below. Let h(x) = f(g(x)). Compute h'(2).

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	11	-3
2	1	3	π	7
3	1	1	$\sqrt{2}$	$-\frac{1}{9}$

Solution: We compute

$$h'(2) = f'(g(2))g'(2) = f'(3)g'(2) = \sqrt{2} \cdot 7 = 7\sqrt{2}.$$