Name: \qquad Academic Integrity Signature:
Note: Correct numerical answers without justification will receive little or no credit.

1. (5 points) The graph of $y=f(x)$ is shown below. Compute $\lim _{x \rightarrow-1} f(x)$, or explain why it does not exist.

Solution: Recall that when we are computing a limit as x approaches x_{0}, we do not care about the actual value of the function at x_{0}. We just look at what happens "nearby".

$$
\lim _{x \rightarrow-1} f(x)=-2
$$

2. (5 points) ($\epsilon-\delta$ definition) Let $f(x)$ be defined on an open interval containing x_{0}, except possibly at x_{0} itself. We say that the limit of $f(x)$ as x approaches x_{0} is L, denoted $\lim _{x \rightarrow x_{0}} f(x)=L$, if

Solution: given $\epsilon>0$, there exists $\delta>0$ such that whenever $0<\left|x-x_{0}\right|<\delta$, we have $|f(x)-L|<\epsilon$.
3. (5 points) Compute $\lim _{t \rightarrow 0} \frac{\sin (\pi t)}{t}$.

Solution: Recall that we proved in class that $\lim _{\theta} \frac{\sin (\theta)}{\theta}=1$. To compute given limit, multiply the numerator and denominator by π

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sin (\pi t)}{t} & =\lim _{t \rightarrow 0} \frac{\pi \sin (\pi t)}{\pi t} \\
& =\pi \lim _{t \rightarrow 0} \frac{\sin (\pi t)}{\pi t} \\
& =\pi \cdot 1 \\
& =\pi .
\end{aligned}
$$

\qquad out of 15 .

