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Abstract

In mathematics, especially number theory, one often comes across problems easy to state, but
whose solutions require very sophisticated methods. The Congruent Number Problem is one
such unsolved problem that goes back thousands of years. A natural number is a congruent
number if it is the area of a right triangle with rational length sides. The Congruent Number
Problem is to find an algorithm to determine whether a given natural number is congruent
or not. There is a conjectural solution, but a proof would require solving a millennium
problem worth a million dollars concerning elliptic curves.The goal of this project is to give
a summary of connection between the congruent numbers and the rational points of special
family of elliptic curves

EN : y2 = x3 −N2x.

After we introduce elliptic curves and the group law of rational points on EN we find the
torsion points by Nagel–Lutz theorem. Then, we show the rational points of these family
of elliptic curves finitely generated which proved by Mordell. After introducing rank of
elliptic curves, we conclude a natural number N is a congruent number if and only if the
corresponding elliptic curve EN(Q) has non-zero rank.
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Chapter 1

Introduction

Mathematics is the Queen of the
Sciences and Number theory is the
Queen of Mathematics.

Gauss

A Thousand Year Old Problem
The congruent number problem was first stated by the Persian mathematician Al-Karaji

(c.953 - c.1029). See Figure 1.1. He stated the problem another form without mention right
triangles. He stated it in terms of square numbers; asked for which whole numbers N , does
there exist a square a2 such that a2−N and a2 +N are also squares? A major influence on
Al-Karaji was the Arabic translations of the works of the Greek mathematician Diophantus
(c.210 - c.290) who stated similar problems.

Figure 1.1: Page from AL-kitab al-Fakhri[cul].

In the eleventh century, Fibonacci found three rational numbers whose squares form
a common difference of 5, he generalized the problem in his 1225 book, Liber Quadrato-
rum [Fib08]. Fibonacci referred to a common difference between numbers in arithmetic
progression of three squares

x2 −N, x2, x2 +N

and named it by congruum from the Latin congruere which means to meet together [Cha06]
since it is clear to see that these three squares

x2 −N, x2, x2 +N
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are congruent modulo N. He proved 5 and 7 are congruent numbers, but he only stated 1 is
not a congruent number without proof. That proof was supplied by Fermat in 1659. Similar
argument of Fermat shows 2 and 3 are not either. Fermat also implied that there are no
rational (x, y) with x, y 6= 0 such that x4 +y4 = 1 which may led him to claim his famous last
theorem which is “there are no non-trivial integer solutions to xa + ya = za for any integer
a ≥ 3.”

In this paper we show how the original version of the congruent number problem connects
with rational points on elliptic curves. The connection of the area of a rational right triangle
N with the rational solution of special family of elliptic curves allows us to reduce the
congruent number problem to find the rational solutions of the corresponding elliptic curve.
Then, we show rational points on these special family of elliptic curves with the point addition
form an Abelian group. After we find the points of finite order which are called torsion points
of the corresponding elliptic curve by Nagel–Lutz theorem, we follow Mordell’s theorem, and
we see that the set of the rational points of corresponding elliptic curve is finitely generated
Abelian group; which means we can construct all elements in the set of rational points on
this curve. Finally, we show the number of the points of infinite order of corresponding
elliptic curve which are called rank, determine N is whether or not a congruent number.
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Chapter 2

Congruent Numbers

A natural number is a congruent number if it is the area of a right triangle with rational
length sides. A right triangle or right-angled triangle is a triangle in which one angle is a
right angle. If the lengths of all three sides are integers, the triangle is called a Pythagorean
triangle and, if the lengths of all sides are rational numbers it is called rational triangle.
Any rational right triangle has a rational area but not conversely. For example, there is no
rational right triangle has the area 1.

We use triples to denote the sides of right-angled triangle such as (α, β, γ).

Example 2.1. 3
2
, 20

3
, 49

12
are the rational numbers which Fibonacci found and the triples

(3
2
, 20

3
, 49

12
) represents the right triangle whose area is 5 and implies 5 is a congruent number.

49
12 3

2

20
3

Figure 2.1: 5 is a congruent number.

Example 2.2. (24
5
, 35

12
, 337

60
)

337
60 35

12

24
5

Figure 2.2: 7 is a congruent number.

Definition 2.3. A Rational Pythagorean triple is a triple (α, β, γ) where α, β, γ ∈ Q such
that

α2 + β2 = γ2.
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Definition 2.4. A Primitive Pythagorean triple is a Pythagorean triple of integers (α, β, γ)
such that α, β, γ ∈ Z and gcd(α, β, γ) = 1.

There are infinitely many primitive triples, but this does not imply every natural num-
ber will be the area of a right triangle. For example, 5 is not the area of any primitive
Pythagorean triples.

Scaling the sides of a right triangle changes the area by a square factor. Let N be a
congruent number which is area of a rational right triangle (a, b, c), when we scale it by k
the new rational right triangle (ka, kb, kc) will have area k2N which is another congruent
number. So, we assume without loss of generality, the congruent number N is a square-free
number.

Example 2.5. Let (3
2
, 20

3
, 41

6
) represent the sides of a right triangle. The area of this triangle

is 5. If we multiply sides by 12, the new triple will be (18, 80, 82) and the new area 720 =
122 · 5. If we multiply sides by 6 the new triple for the triangle is (9, 40, 41) and the area will
be 180 = 62.5. All the numbers 5, 180, 720 are congruent numbers.

1 Congruent Number Problem

Definition 2.6. Original Version of CNP
For a whole number N , does there exist a square a2 such that a2 − N and a2 + N are

also squares?

Definition 2.7. Triangular Version of CNP For a whole number N , does there exist a
rational right triangle with the area N?

These two version of the congruent number problem refer to search the same number N .
Let N be the area of the rational triangle represented by (α, β, γ), We have α, β, γ ∈ Q

with α2 + β2 = γ2 and N = 1
2
αβ. If we multiply N by 4 we have

(α + β)2 = γ2 − 4N

(α− β)2 = γ2 + 4N

then, if we divide them by 4 again, we have

(
α + β

2
)2 = (

γ

2
)2 −N (1.1)

(
α− β

2
)2 = (

γ

2
)2 +N (1.2)

So there exist a square (γ
2
)2 such that (γ

2
)2−N and (γ

2
)2 +N are also squares. Now, we can

define a congruent number formally:

Definition 2.8. A natural number N is a congruent number if there exists α, β, γ ∈ Q such
that

α2 + β2 = γ2 and N =
1

2
αβ.
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Working with square-free integers and primitive Pythagorean triples reduce the case. We
can construct Pythagorean triple which is generated by Euclid’s formula.

Theorem 2.9 (Euclid’s Formula). A triple (α, β, γ) of integers is a Primitive Pythagorean
triple if and only if there exist relatively prime natural numbers, m and n, such that m > n
and α = 2mn, β = m2 − n2, γ = m2 + n2.

This parametric formula helps to construct some congruent numbers. Taking any rela-
tively prime m,n ∈ N, with m > n and evaluating them for α = 2mn and β = m2 − n2,
γ = m2 + n2 . These Primitive Pythagorean triples give a congruent number which is the
area of right triangle.

N = Area =
1

2
αβ = Congruent Number = mn(m2 − n2).

In Table 2.1, we list some of Primitive Pythagorean triples from chosen m,n < 8, the area
N and square-free part of N.

As seen in the Table 2.1 some of congruent numbers repeated and we do not know which
one can repeat again. We can extend the Table 2.1 for increasing values of m and n to find
more congruent numbers but, one can not tell how long one must wait to get N if it is
congruent. Also if N has not appeared, we do not know whether this means that
n is not a congruent number. So this table only can help to construct some congruent
numbers, but it is not an algorithm.

Example 2.10. 53 is a congruent number, but it shows up for the first time when

m = 1873180325

and
n = 1158313156

with the area
N = 53× (297855654284978790)2

Example 2.11. Searching to determine whether a number is congruent or not from the sides
of the right-triangles is not easy calculation. As an example the congruent number N = 157
as the area of the right triangle which has the sides

α =
411340519227716149383203

21666555693714761309610

β =
6803298487826435051217540

411340519227716149383203

This is the “simplest” triangle for the congruent number 157 and was initially mentioned
by Don Zagier in his article. [Zag90]

September 22, 2009 – Mathematicians from North America, Europe, Australia, and South
America have resolved the first one trillion cases of an ancient mathematics problem [Har08].
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Some of the congruent numbers [Slo11]:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45,

46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80,

84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109,

110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126, . . .

2 Arithmetic progressions of three squares

Theorem 2.12. Let n > 0. There is a one to one correspondence between right triangles
with area N and 3-term arithmetic progressions of squares with common difference N :
the sets

{(α, β, γ) : α2 + β2 = γ2,
1

2
αβ = N} and {(r, s, t) : s2 − r2 = t2 − s2 = N}

are in one-to-one correspondence by

(α, β, γ) 7→ (
β − α

2
,
γ

2
,
β + α

2
) and (r, s, t) 7→ (t− r, t+ r, 2s).

This correspondence preserves rationality and positivity/monotonicity, when N > 0.

Example 2.13. The congruent number N = 21 is the area of a triangle represented by
the triple (7

2
, 24

2
, 25

2
). Using the correspondence in Theorem 2.12, this triple yields (r, s, t) =

(17
4
, 25

4
, 31

4
), whose termwise squares are (17

4
)2, (25

4
)2, (31

4
)2 with common difference 21.

Theorem 2.14 ([Kob93]). Let N be a fixed square-free positive integer. Let α, β, γ be positive
rational numbers α < β < γ There is one to one correspondence between right-angled triangle
with legs α and β, hypotenuse γ and area N ; and numbers x for which x, x + N, x−N are
each the square of a rational numbers. The correspondence is

α, β, γ 7→ x = (
γ

2
)2

and
x 7→ α =

√
x+N −

√
x−N, β =

√
x+N +

√
x−N, γ = 2

√
x.

Definition 2.15. An integer N is a congruent number if and only if there exists a rational
number x such that x, x+N, x−N are squares of rational numbers.

By Definition 2.8, an integer N being Congruent Number is equivalent to the existence
of rational numbers α, β, γ such that

γ2 = α2 + β2 and N =
1

2
αβ.

If we multiply equations (1.1) and (1.2) from page 5 side by side we get(α2 − β2

4

)2
=
(γ

2

)4
+N2.
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Let v = α2−β2

4
, and let u = (γ

2
). Then we have

v2 = u4 −N2.

Multiplying by u2, we get
(uv)2 = u6 −N2u2.

Setting x = u2 = (γ
2
)2 and y = uv = γ(α2−β2)

8
, we obtain

y2 = x3 −N2x

which is the equation of an elliptic curve.
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Table 2.1: Congruent Numbers from Pythagorean Triples/

m n (α, β, γ) N = Area Square-free part of N

2 1 (4, 3, 5) 6 6

3 1 (6, 8, 10) 24 6

3 2 (12, 5 , 13) 30 30

4 1 (8, 15, 17) 60 15

4 3 (24 , 7 , 25) 84 21

4 2 (16, 12, 20) 96 6

5 1 (10 , 24 , 26) 120 30

5 4 (40 , 9 , 41) 180 5

5 2 (21, 20, 29) 210 210

5 4 ( 9, 40 , 41) 180 5

4 3 ( 7, 24, 25) 84 21

6 1 (35, 12, 37) 210 210

8 1 (63, 16, 65) 504 6

7 2 (45, 28, 53) 630 70
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Chapter 3

Connection of Congruent Numbers
with Elliptic Curves

From this point we see that the number N which is the area of the right triangle
with rational sides α, β, γ corresponds a rational point on the special family of
the elliptic curves,

EN := y2 = x3 −N2x

One can prove that, if we have a right-angled triangle with rational sides α, β, γ and area N
we can calculate the corresponding rational point (x, y) on the

EN : y2 = x3 − (
1

2
αβ)2x

which gives

(x, y) =
(γ2

4
,
(β2 − α2)γ

8

)
is on the curve.

Example 3.1. If we choose (3, 4, 5) triangle which has the area 6, the corresponding rational
points on the elliptic curve EN := y2 = x3 − 62x is (x, y) =

(
25
4
,±35

8

)
. We have two points

since α and β are right legs and interchangeable, and elliptic curves is symmetric about the
x-axis.

Example 3.2. If we choose (16, 63, 65) triangle which has the area 504 the rational points
(x, y) = (4225

4
,±241345

8
) is on the elliptic curve EN : y2 = x3 − 5042x.

Notice that triangles (3, 4, 5) and (16, 63, 65) show 6 is a congruent number, since square-
free part of 504 is 6.

Example 3.3. The triangles (21, 20, 29) and (35, 12, 37) have the same area 210, but each
triangle corresponds to different points on the curve EN : y2 = x3 − 210x which are(841

4
,±1189

8

)
and

(1369

4
,±39997

8

)
.

Determining whether or not a given natural number is congruent is equivalent to rational
solutions of the curve EN : y2 = x3 −N2x.
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Theorem 3.4 ([Con]). For N > 0, there is one to one correspondence between following
two sets:

{(α, β, γ) : α2 + β2 = γ2, N =
1

2
αβ}, {(x, y) : y2 = x3 −N2x, y 6= 0}.

Mutually inverse correspondences between these sets are

(α, β, γ) 7→
( Nβ

γ − α
,

2N2

γ − α
)
, (x, y) 7→

(x2 −N2

y
,
2Nx

y
,
x2 +N2

y

)
.

In the set of triples since α, β, γ ∈ Q for each triple there are 8 possibilities satisfying
α2 + β2 = γ2 and N = 1

2
αβ.

Four of these points are

(α, β, γ), (−α,−β,−γ), (−α,−β, γ), and (α, β,−γ).

Since α and β are right legs, they are interchangeable to give the remaining four points

(β, α, γ), (−β,−α,−γ), (−β,−α, γ), and β, α,−γ).

Each triple give us a new point on the corresponding elliptic curve. Table 3.1 shows how
these points are related each other, for example if we take the point (x, y) and (0, 0), the
line connecting these two points will intersects with the curve at a third point which gives
us with the correspondence the triple (α, β,−γ).

Table 3.1: 8 Points on EN Correspond 8 Triples for The Area N .

First Point Second Point Third Point Corresponding Triple

(x, y) (α, β, γ)

(x,−y) (α, β,−γ)

(x, y) (0, 0) (−N
2

x
, −N

2y
x2

) (α, β,−γ)

(x,−y) (0, 0) (−N
2

x
, N

2y
x2

) (−α,−β, γ)

(x, y) (N, 0) (N(x+N)
x−N , 2N2y

(x−N)2
) (β, α, γ)

(x,−y) (N, 0) (N(x+N)
x−N , −2N2y

(x−N)2
) (−β,−α,−γ)

(x, y) (−N, 0) (−N(x+N)
x−N , 2N2y

(x−N)2
) (−β,−α, γ)

(x,−y) (−N, 0) (−N(x+N)
x−N , −2N2y

(x−N)2
) (β, α,−γ)

The triple of the lengths of rational right triangle with area N with the arithmetic
progression produces different points on the corresponding elliptic curve EN .
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Definition 3.5 (Elliptic Curve Version of CNP). For a whole number N , does there
exists a rational point(x, y) with y 6= 0 on the elliptic curve EN : y2 = x3 −N2?

Notice that, given a right triangle with rational sides and area N , we obtain a point (x, y)
in the xy-plane having rational coordinates and lying on the curve EN : y2 = x3 − N2x.
Conversely, we can not say that any point (x, y) with x, y ∈ Q which lies on the cubic curve
must necessarily come from such a right triangle with rational sides.

Example 3.6. Consider the right triangle (3
2
, 20

3
, 41

6
) with area 5. By Theorem 3.4, we can

find the corresponding point (x, y) on the elliptic curve EN := y2 = x3 − 25x. If we allow
sign changes of (α, β, γ) we get different points for each triples, as show in Table 3.2.

Table 3.2: Solutions to y2 = x3 − 25x.

Triples for triangle Points on EN

(3
2
, 20

3
, 41

6
) (25

4
, 75

8
)

(−3
2
, −20

3
, −41

6
) (25

4
, −78

8
)

(3
2
, 20

3
, −41

6
) (−4,−6)

(−3
2
, −20

3
, 41

6
) (−4, 6)

(20
3
, 3

2
, 41

6
) (45, 300)

(−20
3
, −3

2
, −41

6
) (−45, 300)

(−20
3
, −3

2
, 41

6
) (−5

9
, 100

27
)

(20
3
, 3

2
, −41

6
) (−5

9
, −100

27
)
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y2 = x3 − 25x

x

y

•(−4, 6)

•(−4,−6)

• (25
4
, 75

8
)

• (25
4
, −75

8
)

Figure 3.1: Some rational points on y2 = x3 − 25x.
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Chapter 4

Projective Plane

An elliptic curve can be viewed as a curve in projective space.In order to understand elliptic
curves we need some basic knowledge about projective plane.The projective plane contains
triples (x, y, z) 6= (0, 0, 0). We denote the line through the vector (x, y, z) by [x : y : z] which
represent all the points of the form [λx : λy : λz] for some nonzero λ with the equivalence
relation ∼ on all triples. This allows us to define P2

Q as

P2
Q = {(x, y, z) | (x, y, z) 6= (0, 0, 0) and x, y, z ∈ Q}/ ∼ .

Elliptic curves in the affine plane A2 are projections of the cubic curves in the projection
plane P2.The affine and projective space are defined over a field.The coordinates of the points
of elliptic curves can belong to such as C, R, Q. The properties of the curve may change
depending on the field over where it is defined.In this paper, we work over Q.In an affine
plane A2 parallel lines never meet but in a projective plane P2, there are no parallel lines at
all; all lines must intersect, and this intersection point is the basic idea for the notion of a
point at infinity. Projective space can be defined as

P2 = A2 ∪ O

The projective plane is generalization of the ordinary xy-plane. In each equivalence class
where z 6= 0 there is a unique point (x, y, 1) which is obtained by normalizing by multiplica-
tion by z−1.The new points we gain are the ones z = 0; the line at infinity. We are interested
in the point [0 : 1 : 0] which is the only point on the line at infinity that lies on the curve
EN .

1 Point Addition Of Elliptic Curve

The fact that the equation of the elliptic curves EN implies that any line intersects with the
curve must intersect in a third point. We can define an addition on the points of an elliptic
curve with the third point as the sum of these two points. Unfortunately, associativity
property does not hold with this operation, but by reflecting the third point over x axis, we
obtain nice operation for the point addition of the elliptic curves.This geometric construction
is also algebraic. An elliptic curve has one point at infinity, and is counted as a rational point.
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EN

x

y

P1•

P2•

•P3 = P1 ? P2

•P1 + P2

Figure 4.1: The sum of points P1 and P2.

The set of rational points on the elliptic curve corresponding to N ; denoted by E(Q) forms
an Abelian group.

We take the point at infinity, O, as the identity element. Let P1 and P2 be two distinct
points on the curve, the line passing through P1 and P2 must intersects with the curve at a
third point P1 ? P2.

Then we will draw the line through O and P1 ? P2. This is the vertical line through
P1 ? P2. since elliptic curves are symmetric about the x-axis, so the intersection of this line
with the curve in a second time will be reflection point of P1 ? P2. If we define the binary
operation ? such that P1 ? P2 is the third intersection point of the line connecting P1 and P2

with the curve, then the addition of points of the elliptic curve can be defined

P1 + P2 = O ? (P1 ? P2)

where O is the point at infinity with O ?O := O.
Suppose E has equation

y2 = x3 −N2x.

Let P1 = (x1, y1), and let P2 = (x1, y2). The line through P1 and P2 intersects the curve in a
third point P3 = P1?P2 = (x3, y3). Then from the construction, it follows P1+P2 = (x3,−y3),
the reflection of the point P3. See Figure 4.1.

The inverse a point P is the reflection across the x-axis of the point P . Let −P = Q,
the line through P and Q is vertical; P ? Q = O. See Figure 4.2.

P +Q = O ? (P ? Q)

= O ?O
= O

15



E

x

y

•P = (x, y)

O

•−P = (x,−y)

Figure 4.2: The inverse of a point P is the reflection acorss the x-axis of P .

We can see easily O = −O since (P ) + (−P ) = O and if three distinct points on an
elliptic curve are colinear if and only if P1 + P2 + P3 = O.

Algebraically the line connecting P1 , P2, and P3 is

y = mx+ n, (1.1)

where

m =
y2 − x2

x2 − x1

and n = y1 −mx1 = y2 −mx2.

We can compute the third intersection point P3; when we substitute the equation (1.1)
into the equation for EN : y2 = x3 −N2x, we have

x3 −N2x = y2

= (mx+ n)2

= m2x2 + 2mnx+ n2.

Then

x3 −N2x−m2x2 − 2mnxnv2 = 0

x3 −m2x2 − (N2 + 2mn)x− n2 = (x− x1)(x− x2)(x− x3).

Simplifying, we see
−m2 = −x1 − x2 − x3

and so
x3 = m2 − x1 − x2 and y3 = mx3 + n.

16



Thus, in order to find P1 + P2 first we will find the coordinates of P3 and then reflect over
the x-axis which is (x3,−y3).

If the points are the same, we use the tangent line to define this addition. Since P1 +P1 =
2P1 := P we draw the tangent line to P and then find the third point of intersection with
the curve and then reflect about x-axis.

2 (E(Q),+) is an Abelian group.

Commutativity

For any two points P1, P2 on E(Q),

P1 + P2 = P2 + P1.

Since there is a unique line through P1 and P2 , then third point of intersection with the
curve is the same for the line through P2 and P1.

Closure

E(Q) is closed under the binary operation +. Since for all P1, P2 ∈ E(Q), P1 + P2 ∈ E(Q).

Identity element

The identity element for the binary operation + is the point at the infinity, O, since for all
P1, P2 on the elliptic curve E(Q)

P1 + P2 = O ? (P1 ? P2).

Thus, for any point P on the elliptic curve

O + P = O ? (O ? P ) = P

since if P = (x, y) then O ? P = −P = (x,−y) so O ? (O ? P ) = (x, y) = P . Thus there
exists an identity element for the group.

Inverse Element

For any point P on the elliptic curve there exists −P such that P + (−P ) = O. Define
−P := P ? (O ?O). Then

P + (−P ) = O ? (P ? (−P ))

= O ? (P ? (P ? (O ?O))

= O.

This means there is no third point on the E which intersects the line through P and −P .
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Associativity

For all the points P1, P2, P3 on the curve

(P1 + P2) + P3 = P1 + (P2 + P3).

See [ST15, pg 14].

3 Torsion Points

For the rational points on a non-singular elliptic curve, we could assign an order for each
element P with the point addition.

Definition 4.1. An element P of any group has an order n if n is the minimum positive
integer satisfying

nP = P + P + ...+ P︸ ︷︷ ︸
the sum of n P s

= O.

If such n exists for P , then P has finite order. Otherwise it has infinite order.

In the Abelian group E(Q), the set of elements of finite order form a subgroup, called
the torsion subgroup.

We have the following result of Nagell–Lutz [SZ03, Theorem 6.26] that allows us to
compute the torsion points of an elliptic curve over Q.

4 Nagel–Lutz theorem

Theorem 4.2 (Nagell–Lutz Theorem). Let E be an elliptic curve in short Weierstrass nor-
mal form

E : y2 = x3 + Ax+B

with integral coefficients A,B ∈ Z. Let O 6= P = (x, y) ∈ E(Q)tors. Then

1. x, y ∈ Z and

2. either 2P = O or y2 divides ∆0 = −∆
16

= 4A3 + 27B2.

We are interested only in the special family of the elliptic curves of the form EN := y2 =
x3 −N2x.

Corollary 4.3. If EN be an elliptic curve of the form

y2 = x3 −N2x,

and let ∆0 = 4N6. Then the torsion points of EN are either y = 0 or y2 | 4N6.

Lemma 4.4. #EN(Q)tors = 4.
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y2 = x3 −Nx

x

y

the line at infinity

•P + P

Figure 4.3: P + P = 2P = O, P has order two.

Proof. The point P has order 2 if P + P = 2P = O, but P 6= O.
Since P = −P, these points are the solutions of the curve when y = 0, i.e.,

P1 = (0, 0), P2 = (N, 0), P3 = (−N, 0).

Thus, all the points of order 2 which satisfy y2 = x3 −N2x = 0 and the point at infinity
determine the full torsion subgroup of EN(Q).

Since y2 = x3 −N2x has no integer solution when y = 0 and y2 | 4N6

EN(Q)tors = {O, (0, 0), (N, 0), (−N, 0)}.

Using the group law, one can show

E(Q)tors ' Z/2Z× Z/2Z.

For any n, the set of solutions to nP = O forms a subgroup of the Abelian group, so the
set {O, P1, P2, P3} is the torsion subgroup of the Abelian group (EN(Q),+).

Nagell–Lutz theorem gives information about an elliptic curve defined over Q has integer
coordinates, but not about the structure of EN(Q)tors. In 1977, Mazur stated explicitly the
possibilities for EN(Q)tors for any elliptic curve over the rationals.

Nagell–Lutz theorem allows us to find all of rational the points of finite order for an elliptic
curve. Suppose P is a rational point on EN(Q) that is not in {O, (0, 0), (N, 0), (−N, 0)}.
Then P is not be a torsion point so all the multiple of P s are different.
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EN

x

y

P •

•
P ? P

•P + P = 2P

Figure 4.4: P has not finite order.

E

x

y

•−N •0 •N

Figure 4.5: Torsion Points of EN : y2 = x3 −N2x.
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5 Mordell–Weil theorem

One of the goals of the Number theory from the ancient times to solve Diophantine equations.
In general the question is how we can describe the set of rational numbers on any curve.

Mordell (1992) proved that over rationals then Weil (1929) extended result for arbitrary
number field.

Theorem 4.5 (Mordell–Weil). E(Q) is a finitely generated Abelian group.

The proof consist of two steps, which can be found in [SZ03, pg 88] and [Sil09].

Proposition 4.6. The group of rational points EN(Q) is isomorphic to the direct sum of
EN(Q)tors and a finite number of copies of Z

EN(Q) ≈ EN(Q)tors ⊕ Zr

where the nonnegative integer r is rank of EN(Q).

For specific cases the rank has been determined but still it is an open problem to compute
rank in general. (The current record for rank of a rational elliptic curve was found by Noam
Elkies, in 2006, when he produced an elliptic curve of rank at least 28 [Duj].)

When the rank of EN(Q) is zero, EN(Q) has only torsion points. In this case, there are
no points of infinite order so there are no corresponding rational triangles. If the rank r > 0,
then the correspondence between these points on the EN(Q) and Pythagorean triples yields
the following result.

Proposition 4.7 ([Kob93, pg.46]). An integer N is a congruent number if and only if the
elliptic curve

EN(Q) : y2 = x3 −N2x

has nonzero rank.
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Chapter 5

5 is Congruent Number

In this chapter, we examine in detail the general results above in the specific example N = 5.
The triple (3

2
, 20

3
, 49

12
) shows that 5 is a congruent number. See Figure 5.1.

49
12 3

2

20
3

Figure 5.1: 5 is a congruent number.

Since 5 is a congruent number, there exists a right-angled triangle with rational sides
which has area 5. Using the correspondence in Theorem 3.4, we find a rational point on the
special elliptic curve E5 : y2 = x3 − 52x.

By the Nagell–Lutz theorem E5(Q) has torsion subgroup

E5(Q)tors = {O, T1, T2, T3},

where T1 = (0, 0), T2 = (−5, 0), and T3 = (5, 0). Each Ti has order 2, and

T1 + T2 + T3 = O,

so
E5(Q)tors ' Z/2Z× Z/2Z.

By the Mordell–Weil Theorem, E5(Q) is finitely generated. Using magma, we find the
rank of E5(Q) is 1, so

E5(Q) ' Z/2Z× Z/2Z× Z1,

and the point P = (−4, 6) is a generator for the free part of E5(Q).
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Table 5.1: All the points in the table on the left give rise to one triangle whose area is 5
using Theorem 3.4.

P (−4, 6)

P + T1 (25
4
, 75

8
)

P + T2 (−5
9
, −100

27
)

P + T3 (45,−300)

−P (−4,−6)

−P + T1 (25
4
, −75

8
)

−P + T2 (−5
9
, 100

27
)

−P + T3 (45, 300)

41
6 20

3

3
2

Table 5.2: All the point in the table on the left give rise to the one triangle whose area is 5
using Theorem 3.4.

2P (1681
144

, −62279
1728

)

2P + T1 (−3600
1681

, −455700
68921

)

2P + T2 (12005
961

, 1205400
29791

)

2P + T3 (−4805
2401

, 762600
117649

)

−2P (1681
144

, 62279
1728

)

−2P + T1 (−3600
1681

, 455700
68921

)

−2P + T2 (12005
961

, −1205400
29791

)

−2P + T3 (−4805
2401

, −762600
117649

)

3344161
747348 4920

1519

1519
492
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Table 5.3: All the point in the table on the left give rise to the one triangle whose area is 5
using Theorem 3.4.

3P (−2439844
5094049

, 39601568754
11497268593

)

3P + T1 (127351225
2439844

, 1430549626725
3811036328

)

3P + T2 (−115152005
27910089

, 845927888300
147449000187

)

−3P (−2439844
5094049

, −39601568754
11497268593

)

−3P + T1 (127351225
2439844

, −1430549626725
3811036328

)

−3P + T2 (−115152005
27910089

, 845927888300
147449000187

)

−3P + T3 (139550445
23030401

, 931243391100
110522894399

)

25353117
3525434

35254340
25353117
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Table 5.4: 5 is a Congruent Number.

Point (x, y) (α, β, γ) Area N

P (−4, 6) (−3
2
, −20

3
, 41

6
) (−3

2
)(−20

3
)(1

2
) 5

2P (1681
144

, −62279
1728

) (−1519
492

, −4920
1519

, −3344161
747348

) (−1519
492

)(−4920
1519

)(1
2
) 5

3P (−2439844
5094049

, 39601568754
11497268593

) (−25353117
3525434

, −35254340
25353117

, 654686219104361
89380740677778

) (−2439844
5094049

)(−35254340
25353117

)(1
2
) 5

P + T1 (25
4
, 20

3
) (3

2
, 20

3
, 41

6
) (3

2
)(20

3
)(1

2
) 5

P + T3 (−5
9
, −100

27
) (20

3
, 3

2
, −41

6
) (20

3
)(3

2
)(1

2
) 5

2P + T2 (−4805
2401

, 762600
117649

) (−4920
1519

, −1519
492

, 3344161
747348

) (−4920
1519

)(−1519
492

)(1
2
) 5

−2P (1681
144

, 62279
1728

(1519
492

, 4920
1519

, 3344161
747348

) (1519
492

)(4920
1519

)(1
2
) 5

4P (11183412793921
2234116132416

, 1791076534232245919
3339324446657665536

) ( 535583225279
4998504070056

, 49985040700560
535583225279

, 249850594047271558364480641
2677114931410801046145624

) (−3
2

)(−20
3

)(1
2
) 5
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