Table of tame and wild kernels

of quadratic imaginary number fields of discriminants >-5000
(conjectural values)
by
Jerzy Browkin (Warsaw) and Herbert Gangl (Essen)

1. Introduction.

Assuming Lichtenbaum's conjecture one can compute conjectural values of orders of the tame kernels $K_{2} O_{F}$ of quadratic imaginary number fields F.

Since in general these orders are not very large, and there are several results known concerning the $p-\mathrm{rank}$ of $K_{2} O_{F}$ and of its subgroup W_{F} called the wild kernel, it is possible to determine the structure of these groups for the fields in question with discriminants $d>-5000$.

2. Notations.

- F is a number field with r_{1} real and $2 r_{2}$ complex embeddings.
- $\zeta_{F}(s)$ is the Dedekind zeta function of F, d is the discriminant of F.
- For F imaginary quadratic we denote $d^{\prime}=d / 4$, if $4 \mid d$, and $d^{\prime}=d$ otherwise.
- O_{F} is the ring of integers of F.
- $K_{n} O_{F}$ is the nth Quillen K-group of O_{F}, and especially
- $K_{2} O_{F}$ is the Milnor group of O_{F} (the tame kernel).
- W_{F} is the Hilbert kernel of F (the wild kernel).
- e_{p} is the $p-\mathrm{rank}$ of $K_{2} O_{F}$, where p is a prime or $p=4$.
- w_{2} is the $2-\mathrm{rank}$ of W_{F}.
- $w(F)$ is the number of roots of unity in F.
- $C l(P)$ is the class group of a Dedekind ring P.
- $R_{m}(F)$ is a "twisted" version of the m th Borel regulator (cf. [Bo1]), the "twisted" regulator map $r_{m}(F)$ being a map

$$
r_{m}(F): K_{2 m-1} O_{F} \rightarrow\left[(2 \pi i)^{m-1} \mathbf{R}\right]^{d_{m}}
$$

where $d_{m}=r_{2}$ for m even, $=r_{1}+r_{2}$ for m odd, $m>1$, and $d_{1}=r_{1}+r_{2}-1$, (this is just the order of vanishing of $\zeta_{F}(s)$ at $\left.s=1-m\right) . R_{m}(F)$ is the covolume of the image of $r_{m}(F)$ and differs by Borel's original one essentially by a power of π ([Bo2], there is also a shift $m \mapsto m+1$ compared to the original notation).

3. Computing the value $\# K_{2} O_{F}$.

Lichtenbaum's conjecture [Li] (as modified by Borel [Bo]) asks whether for all number fields and for any integer $m \geq 1$ there is a relation of the form

$$
\operatorname{res}_{s=1-m} \zeta_{F}(s)(s-1+m)^{-d_{m}(F)} \stackrel{?}{=} \pm \frac{\# K_{2 m-2}\left(O_{F}\right)}{\# K_{2 m-1}^{\text {ind }}\left(O_{F}\right)_{\mathrm{tors}}} \cdot R_{m}(F),
$$

where the subscript "tors" denotes the torsion part, "res" the residue, and "ind" the indecomposable part. There is some evidence for this conjecture, namely for $m=1$ this is the Dirichlet class number formula, and for $m=2$ and F totallyreal abelian it has been proved (up to a power of 2) by Mazur-Wiles [M-W] as a consequence of their proof of the main conjecture of Iwasawa theory (in this case $R_{2}(F)=1$, though).

In what follows we assume $m=2$ and F imaginary quadratic. In this case, the Lichtenbaum conjecture reads (using the functional equation for the zeta function and the fact that $\# K_{3}^{\text {ind }}\left(O_{F}\right)_{\text {tors }}$ is here always 24),

$$
\frac{3|d|^{3 / 2}}{\pi^{2} \cdot R_{2}(F)} \cdot \zeta_{F}(2) \stackrel{?}{=} \# K_{2}\left(O_{F}\right)
$$

Bloch [Bl] suggested and Suslin [Su] finally proved that Borel's regulator map can be given in terms of the Bloch-Wigner dilogarithm $D_{2}(z)$ as a map on the Bloch group $B(F)$; here $D_{2}(z)=\Im\left(L i_{2}(z)+\log |z| \log (1-z)\right)$, where $L i_{2}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{2}}$ is the classical dilogarithm function, defined for $|z|<1$ and analytically continued to $\mathbf{C}-[1, \infty)$, and $B(F)$ is given in explicit form with generators and relations (cf. [Su]):

$$
B(F)=\frac{\left\{\sum_{i} n_{i}\left[x_{i}\right] \mid \sum_{i} n_{i}\left(x_{i} \wedge\left(1-x_{i}\right)\right)=0 \in \bigwedge^{2} F^{\times}\right\}}{\left\langle\left.[x]-[y]+\left[\frac{y}{x}\right]-\left[\frac{1-y}{1-x}\right]+\left[\frac{1-y^{-1}}{1-x^{-1}}\right] \right\rvert\, x, y \in F^{\times}-\{1\}\right\rangle} .
$$

The dilogarithm $D_{2}(z)$ maps $B(F)$ onto a lattice in \mathbf{R} whose covolume we denote by D_{2}^{F}. Thus, we can replace $R_{2}(F)$ in the formula above by D_{2}^{F} and still hope for the equality to hold (up to a universal factor):

$$
\frac{3|d|^{3 / 2}}{\pi^{2} \cdot D_{2}^{F}} \cdot \zeta_{F}(2) \stackrel{?}{=} \# K_{2}\left(O_{F}\right)
$$

The left hand side now can be computed numerically: we proceed by looking for elements $\xi \in B(F)$ which are supported on exceptional S-units for some small set S of irreducibles in F, i.e. $\xi=\sum_{i} n_{i}\left[x_{i}\right]$ such that $\sum_{i} n_{i}\left(x_{i} \wedge\left(1-x_{i}\right)\right)=0$, and $x_{i}, 1-x_{i} \in\left\{ \pm \prod_{p \in S} p^{a_{p}} \mid a_{p} \in \mathbf{Z}\right\}$. The images $D_{2}(\xi)$ lie in a 1-dimensional lattice of covolume $D_{2}^{F, S}$ (this also depends on the bounds for the exponents a_{p}), therefore the numerically computed values should all be commensurable. If we have computed enough different values $D_{2}(\xi)$ there is a good chance that they already generate the lattice and give D_{2}^{F}.

Our program, written in PARI [BBCO], performs the above calculations successively for an increasing set of irreducibles and stops if the corresponding $D_{2}^{F, S}$ stabilizes (i.e. if the same covolume occurs for S and $S \cup\left\{s_{0}\right\}, s_{0} \notin S$ irreducible).

The reliability of the computations is supported by the fact that the results of a former (shorter) table [Ga] were not only compatible with the structural theoretical results known for the corresponding K-groups but even suggested several conjectures, many of which have been proved in the meantime by Browkin [B-92] and others ([C-H], [Qin]).

Our approach is very similar to that of Grayson [Gr], only that we don't have to restrict ourselves to class number one, and our program works even for very large discriminants (e.g. for $F=\mathbf{Q}(\sqrt{-2000004})$ we obtain $\# K_{2} O_{F}=4$).

The program is freely available from the second author via e-mail, together with some remarks on the modification of the parameters.

4. Determining the structure.

In order to establish the actual structure of the tame and wild kernel we apply the following results:
(1) The index $i_{F}:=\left(K_{2} O_{F}: W_{F}\right)$ always divides 6 . More precisely,

$$
\begin{array}{lll}
2 \mid i_{F} & \text { iff } & d^{\prime} \equiv \pm 1(\bmod 8), \\
3 \mid i_{F} & \text { iff } & d \equiv-3(\bmod 9) .
\end{array}
$$

(See [B-82], Table 1).
(2) The 2 -rank of the tame and wild kernel can be computed easily:

$$
e_{2}= \begin{cases}t, & \text { if every odd prime divisor of } d \text { is } \equiv \pm 1(\bmod 8) \\ t-1, & \text { otherwise },\end{cases}
$$

where t is the number of odd prime divisors of d.

$$
w_{2}= \begin{cases}e_{2}, & \text { if } d^{\prime} \not \equiv 1(\bmod 8), \\ e_{2}-1, & \text { otherwise }\end{cases}
$$

(See [B-S], Theorem 4).
(3) The 4-rank of the tame kernel can be easily determined using the results of [Qin], at least if the number of odd prime divisors of d does not exceed 3 .
The $p-\operatorname{rank}$ of $K_{2} O_{F}$, for odd p, is related to the $p-\mathrm{rank}$ of the class group of an appropriate number field as follows.
(4) Let $E_{3}=\mathbf{Q}(\sqrt{-3 d})$ and $e_{3}^{\prime}=3-\operatorname{rank} C l\left(O_{E_{3}}\right)$. Then

$$
e_{3}=e_{3}^{\prime}, \quad \text { if } \quad d \not \equiv-3(\bmod 9),
$$

and

$$
\max \left(1, e_{3}^{\prime}\right) \leq e_{3} \leq e_{3}^{\prime}+1, \quad \text { otherwise }
$$

(See [B-92], Theorem 5.6).
(5) Let $E_{5}=\mathbf{Q}(\sqrt{5 d})$, and $e_{5}^{\prime}=5-\operatorname{rank} C l\left(O_{E_{5}}\right)$. Then $e_{5} \leq e_{5}^{\prime}$. (See [B-92], Theorem 5.4).
(6) For $p>5$, where p is a regular prime, let E_{p} be the maximal real subfield of the field $F\left(\zeta_{p}\right)$, and let $e_{p}^{\prime}=p-\operatorname{rank} C l\left(O_{E_{p}}\right)$. Then $e_{p} \leq e_{p}^{\prime}$.
(See [B-92], Theorem 5.4).

5. Examples.

1) For $d=-644$, we have $\# K_{2} O_{F}=32$ (conjecturally), and $e_{2}=2, w_{2}=2$. Moreover $e_{4}=1$, since $644=4 \cdot 7 \cdot 23$, and $7 \equiv 23 \equiv 7(\bmod 8)$, see [Qin].
Finally $\left(K_{2} O_{F}: W_{F}\right)=2$, since $d^{\prime}=-161 \equiv 7(\bmod 8)$ and $d \not \equiv-3(\bmod 9)$.
It follows that

$$
K_{2} O_{F}=\mathbf{Z} / 2 \times \mathbf{Z} / 16 \quad \text { and } \quad W_{F}=\mathbf{Z} / 2 \times \mathbf{Z} / 8
$$

2) For $d=-255$ we have $\# K_{2} O_{F}=12$ (conjecturally). Moreover $e_{2}=2$, $w_{2}=1$, and $d \equiv-3(\bmod 9)$.

Therefore

$$
K_{2} O_{F}=\mathbf{Z} / 2 \times \mathbf{Z} / 2 \times \mathbf{Z} / 3 \quad \text { and } \quad W_{F}=\mathbf{Z} / 2
$$

3) For $d=-759$, we have $\# K_{2} O_{F}=36$ (conjecturally), and $e_{2}=2, w_{2}=1$, and $d \equiv-3(\bmod 9)$.
Moreover, for

$$
E_{3}=\mathbf{Q}(\sqrt{3 d})=\mathbf{Q}(\sqrt{-253})
$$

we have $3-\operatorname{rank} \mathrm{Cl}\left(O_{E_{3}}\right)=0$.
Therefore

$$
K_{2} O_{F}=\mathbf{Z} / 2 \times \mathbf{Z} / 2 \times \mathbf{Z} / 9 \quad \text { and } \quad W_{F}=\mathbf{Z} / 2 \times \mathbf{Z} / 3
$$

4) For $d=-2395$, we have $\# K_{2} O_{F}=25$ (conjecturally). Moreover, for $E_{5}=\mathbf{Q}(\sqrt{5 d})=\mathbf{Q}(\sqrt{-479})$, we have $5-\operatorname{rank} C l\left(O_{E_{5}}\right)=1$.

Therefore, using (5),

$$
K_{2} O_{F}=W_{F}=\mathbf{Z} / 25
$$

5) For $d=-1832$, we have $\# K_{2} O_{F}=49$ (conjecturally). The maximal real subfield E_{7} of the field $F\left(\zeta_{7}\right)=\mathbf{Q}\left(\sqrt{-d}, \zeta_{7}\right)$ is generated over \mathbf{Q} by a root of the polynomial

$$
f(x)=x^{6}+7 d x^{4}+14 d^{2} x^{2}+7 d^{3} .
$$

In our case

$$
e_{7}^{\prime}=7-\operatorname{rank} C l\left(O_{E_{7}}\right)=1
$$

Therefore, in view of (6),

$$
K_{2} O_{F}=W_{F}=\mathbf{Z} / 49
$$

6. Description of the table.

In the first column there is the negative discriminant d. The last two columns give the structure of the tame and the wild kernel of the corresponding field. In these columns a single number n denotes the cyclic group of order n, and a sequence $\left(n_{1}, n_{2}, \ldots\right)$ denotes the direct sum of cyclic groups of orders n_{1}, n_{2}, \ldots.

The last two columns contain correct results provided the conjectural value of $\# K_{2} O_{F}$ is correct.

References

[BBCO] C. Bernardi. D. Batut, H. Cohen and M. Olivier, GP-PARI, a computer package.
[Bl] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. Int. Symp. Alg. Geom., Kyoto 1977, Kinokuniya, 103-114.
[Bo1] A. Borel, Cohomologie de SL_{n} et valeurs de fonctions zêta aux points entiers, Ann. Sc. Norm. Sup. Pisa (4) 4 (1977), no. 4, 613-636.
[Bo2] A. Borel, Lectures given at the MPI Bonn, Spring 1994.
[B-82] J. Browkin, The functor K_{2} for the ring of integers of a number field, Banach Center Publications, vol. 9 (1982), 187-195.
[B-92] J. Browkin, On the p-rank of the tame kernel of algebraic number fields, Journ. reine angew. Math., 432 (1992), 135-149.
[B-S] J. Browkin and A. Schinzel, On Sylow 2-subgroups of $K_{2} O_{F}$ for quadratic number fields F, Journ. reine angew. Math., 331 (1982), 104-113.
[C-H] P. E. Conner and J. Hurrelbrink, Class number parity, Series in Pure Math. 8, World Scientific Publ., 1988.
[Ga] H. Gangl, Werte von Dedekindschen Zetafunktionen, Dilogarithmuswerte und Pflasterungen des hyperbolischen Raumes, Diplomarbeit, Bonn 1989.
[Gr] D. Grayson, Dilogarithm computations for K_{3}, Alg. K-theory, Evanston 1980, LNM 854, 168-178.
[Li] S. Lichtenbaum, Values of zeta-functions, étale cohomology and algebraic Ktheory, in Alg. K-theory II, Springer LNM 342, 1973, 489-501.
[M-W] B. Mazur, A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), no. 2, 179-330.
[Qin] Qin Hourong, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith., 69 (1995), 153-169.
[Sk] M. Skałba, Generalization of Thue's theorem and computation of the group $K_{2} O_{F}$, JNT 46 (1994), 303-322.
[Su] A.A. Suslin, Algebraic K-theory of fields, Lecture at ICM Berkeley 1986, 222244.
[Ta] J. Tate, Appendix to "The Milnor ring of a global field" by H. Bass and J. Tate, in Alg. K-theory II, Springer LNM 342, 1973, 429-446.

Jerzy Browkin
Institute of Mathematics
University of Warsaw, ul. Banacha 2
PL-02-097 Warszawa, Poland
e-mail: bro@mimuw.edu.pl

Herbert Gangl
Institute for Experimental Mathematics
Ellernstr. 29
45326 Essen, Germany
e-mail: herbert@mpim-bonn.mpg.de

