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1. Introduction.

Assuming Lichtenbaum’s conjecture one can compute conjectural values of
orders of the tame kernels K2OF of quadratic imaginary number fields F.

Since in general these orders are not very large, and there are several results
known concerning the p−rank of K2OF and of its subgroup WF called the wild
kernel, it is possible to determine the structure of these groups for the fields in
question with discriminants d > −5000.

2. Notations.

• F is a number field with r1 real and 2r2 complex embeddings.

• ζF (s) is the Dedekind zeta function of F , d is the discriminant of F .

• For F imaginary quadratic we denote d′ = d/4, if 4|d, and d′ = d otherwise.

• OF is the ring of integers of F.

• KnOF is the nth Quillen K–group of OF , and especially

• K2OF is the Milnor group of OF (the tame kernel).

• WF is the Hilbert kernel of F (the wild kernel).

• ep is the p−rank of K2OF , where p is a prime or p = 4.

• w2 is the 2−rank of WF .

• w(F ) is the number of roots of unity in F .

• Cl(P ) is the class group of a Dedekind ring P.

• Rm(F ) is a “twisted” version of the mth Borel regulator (cf. [Bo1]), the
“twisted” regulator map rm(F ) being a map

rm(F ) : K2m−1OF →
[

(2πi)m−1R
]dm

,

where dm = r2 for m even, = r1 + r2 for m odd, m > 1, and d1 = r1 + r2 −1, (this
is just the order of vanishing of ζF (s) at s = 1 − m). Rm(F ) is the covolume of
the image of rm(F ) and differs by Borel’s original one essentially by a power of π
([Bo2], there is also a shift m 7→ m + 1 compared to the original notation).

3. Computing the value #K2OF .

Lichtenbaum’s conjecture [Li] (as modified by Borel [Bo]) asks whether for all
number fields and for any integer m ≥ 1 there is a relation of the form

ress=1−m ζF (s)(s− 1 + m)−dm(F ) ?
= ± #K2m−2(OF )

#K ind
2m−1(OF )tors

· Rm(F ) ,
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where the subscript “tors” denotes the torsion part, “res” the residue, and “ind”
the indecomposable part. There is some evidence for this conjecture, namely for
m = 1 this is the Dirichlet class number formula, and for m = 2 and F totally-
real abelian it has been proved (up to a power of 2) by Mazur–Wiles [M–W] as a
consequence of their proof of the main conjecture of Iwasawa theory (in this case
R2(F ) = 1, though).

In what follows we assume m = 2 and F imaginary quadratic. In this case, the
Lichtenbaum conjecture reads (using the functional equation for the zeta function
and the fact that #K ind

3 (OF )tors is here always 24),

3|d|3/2

π2 · R2(F )
· ζF (2)

?
= #K2(OF ) .

Bloch [Bl] suggested and Suslin [Su] finally proved that Borel’s regulator map can
be given in terms of the Bloch-Wigner dilogarithm D2(z) as a map on the Bloch
group B(F ); here D2(z) = ℑ

(

Li2(z) + log |z| log(1− z)
)

, where Li2(z) =
∑

n≥1
zn

n2

is the classical dilogarithm function, defined for |z| < 1 and analytically continued
to C − [1,∞), and B(F ) is given in explicit form with generators and relations
(cf. [Su]):

B(F ) =
{∑i ni[xi] |

∑

i ni

(

xi ∧ (1 − xi)
)

= 0 ∈ ∧2
F×}

〈 [x] − [y] + [ y
x ] − [ 1−y

1−x ] + [ 1−y−1

1−x−1 ] | x, y ∈ F× − {1} 〉
.

The dilogarithm D2(z) maps B(F ) onto a lattice in R whose covolume we
denote by DF

2 . Thus, we can replace R2(F ) in the formula above by DF
2 and still

hope for the equality to hold (up to a universal factor):

3|d|3/2

π2 · DF
2

· ζF (2)
?
= #K2(OF ) .

The left hand side now can be computed numerically: we proceed by looking for
elements ξ ∈ B(F ) which are supported on exceptional S−units for some small
set S of irreducibles in F , i.e. ξ =

∑

i ni[xi] such that
∑

i ni

(

xi ∧ (1 − xi)
)

= 0,

and xi, 1 − xi ∈
{

±
∏

p∈S pap | ap ∈ Z
}

. The images D2(ξ) lie in a 1-dimensional

lattice of covolume DF,S
2 (this also depends on the bounds for the exponents ap),

therefore the numerically computed values should all be commensurable. If we
have computed enough different values D2(ξ) there is a good chance that they
already generate the lattice and give DF

2 .
Our program, written in PARI [BBCO], performs the above calculations suc-

cessively for an increasing set of irreducibles and stops if the corresponding DF,S
2

stabilizes (i.e. if the same covolume occurs for S and S∪{s0}, s0 6∈ S irreducible).
The reliability of the computations is supported by the fact that the results

of a former (shorter) table [Ga] were not only compatible with the structural
theoretical results known for the corresponding K−groups but even suggested
several conjectures, many of which have been proved in the meantime by Browkin
[B–92] and others ([C-H], [Qin]).
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Our approach is very similar to that of Grayson [Gr], only that we don’t have
to restrict ourselves to class number one, and our program works even for very
large discriminants (e.g. for F = Q(

√
−2000004) we obtain #K2OF = 4).

The program is freely available from the second author via e-mail, together
with some remarks on the modification of the parameters.

4. Determining the structure.

In order to establish the actual structure of the tame and wild kernel we apply
the following results:

(1) The index iF := (K2OF : WF ) always divides 6. More precisely,

2|iF iff d′ ≡ ±1 (mod 8),

3|iF iff d ≡ −3 (mod 9).

(See [B-82], Table 1).
(2) The 2−rank of the tame and wild kernel can be computed easily:

e2 =

{

t, if every odd prime divisor of d is ≡ ±1 (mod 8),
t − 1, otherwise,

where t is the number of odd prime divisors of d.

w2 =

{

e2, if d′ 6≡ 1 (mod 8),
e2 − 1, otherwise.

(See [B–S], Theorem 4).

(3) The 4−rank of the tame kernel can be easily determined using the results of
[Qin], at least if the number of odd prime divisors of d does not exceed 3.

The p−rank of K2OF , for odd p, is related to the p−rank of the class group
of an appropriate number field as follows.

(4) Let E3 = Q(
√
−3d) and e′3 = 3−rank Cl(OE3

). Then

e3 = e′3, if d 6≡ −3 (mod 9),

and
max(1, e′3) ≤ e3 ≤ e′3 + 1, otherwise.

(See [B–92], Theorem 5.6).

(5) Let E5 = Q(
√

5d), and e′5 = 5−rank Cl(OE5
). Then e5 ≤ e′5.

(See [B–92], Theorem 5.4).

(6) For p > 5, where p is a regular prime, let Ep be the maximal real subfield of
the field F (ζp), and let e′p = p−rank Cl(OEp

). Then ep ≤ e′p.

(See [B–92], Theorem 5.4).
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5. Examples.

1) For d = −644, we have #K2OF = 32 (conjecturally), and e2 = 2, w2 = 2.
Moreover e4 = 1, since 644 = 4 · 7 · 23, and 7 ≡ 23 ≡ 7 (mod 8), see [Qin].

Finally (K2OF : WF ) = 2, since d′ = −161 ≡ 7 (mod 8) and d 6≡ −3 (mod 9).

It follows that

K2OF = Z/2 × Z/16 and WF = Z/2 × Z/8.

2) For d = −255 we have #K2OF = 12 (conjecturally). Moreover e2 = 2,
w2 = 1, and d ≡ −3 (mod 9).

Therefore

K2OF = Z/2 × Z/2 × Z/3 and WF = Z/2.

3) For d = −759, we have #K2OF = 36 (conjecturally), and e2 = 2, w2 = 1,
and d ≡ −3 (mod 9).
Moreover, for

E3 = Q(
√

3d) = Q(
√
−253),

we have 3−rank Cl(OE3
)=0.

Therefore

K2OF = Z/2 × Z/2 × Z/9 and WF = Z/2 × Z/3.

4) For d = −2395, we have #K2OF = 25 (conjecturally). Moreover, for
E5 = Q(

√
5d) = Q(

√
−479), we have 5−rank Cl(OE5

) = 1.

Therefore, using (5),

K2OF = WF = Z/25.

5) For d = −1832, we have #K2OF = 49 (conjecturally). The maximal real
subfield E7 of the field F (ζ7) = Q(

√
−d, ζ7) is generated over Q by a root of the

polynomial

f(x) = x6 + 7dx4 + 14d2x2 + 7d3.

In our case

e′7 = 7−rank Cl(OE7
)=1.

Therefore, in view of (6),

K2OF = WF = Z/49.

6. Description of the table.

In the first column there is the negative discriminant d. The last two columns
give the structure of the tame and the wild kernel of the corresponding field.
In these columns a single number n denotes the cyclic group of order n, and a
sequence (n1, n2, . . .) denotes the direct sum of cyclic groups of orders n1, n2, . . . .

The last two columns contain correct results provided the conjectural value
of #K2OF is correct.
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