Buildings Summer School Exercise Set 1

- 1. Prove that every J-residue of Δ is a building of type M_J .
- 2. If $\delta(x, y) = s_f$ with f not necessarily reduced, show there is a gallery of type f from x to y.
- 3. Let G be a group, B a subgroup, and for each $i \in I$, let there be a subgroup P_i with $B \leq P_i < G$. Take as chambers the left cosets of B, and set $gB \sim_i hB$ if and only if $gP_i = hP_i$.
 - (a) Show that this chamber system is connected if and only if $G = \langle P_i \rangle_{i \in I}$.
 - (b) An *automorphism* of a chamber system C is a bijective map on chambers of C that preserves *i*-adjacency for each $i \in I$. Let C be a chamber system admitting G as a group of automorphisms acting transitively on the set of chambers. Given some chamber $c \in C$, let B denote its stabilizer in G, and let P_i denote the stabilizer of the *i*-panel on c. Show that C is the chamber system given by cosets of B as described above.
- 4. Construct the $A_2(\mathbb{F}_3)$ building.
- 5. The group $\operatorname{GL}_{n+1}(k)$ of $(n+1) \times (n+1)$ invertible matrices over a field k acts on (n+1)-dimensional vector spaces V over k and hence on the building $A_n(k)$.
 - (a) Check that this action preserves i-adjacency for each i.
 - (b) Show that the stabilizer of a chamber is the subgroup of upper triangular matrices using a suitable ordered basis.
 - (c) Show that the subgroup fixing all the chambers of an apartment is the group of diagonal matrices corresponding to a suitable basis. (An apartment can be described as follows: fix a basis $v_1, v_2, \ldots, v_{n+1}$ of V, and take every subspace spanned by a proper subset of this basis, and all nested sequences of such subspaces. The chambers of the apartment are thus all

$$\langle v_{\sigma(1)} \rangle \subset \langle v_{\sigma(1)}, v_{\sigma(2)} \rangle \subset \cdots \subset \langle v_{\sigma(1)}, \dots, v_{\sigma(n)} \rangle$$

where σ ranges through all permutations of $1, \ldots, n+1$.)

6. Let V be a 2n-dimensional vector space over a field k, with basis $x_1, \ldots, x_n, y_1, \ldots, y_n$, and a bilinear form (\cdot, \cdot) defined by

$$(x_i, y_j) = \delta_{ij} = -(y_j, x_i)$$

 $(x_i, x_j) = 0 = (y_i, y_j).$

A subspace S is called totally isotropic (t.i.) if (v, w) = 0 for all $v, w \in S$; for example $\langle x_1, y_2, y_3 \rangle$.

- (a) For any subspace U, let $U^{\perp} = \{v \in V \mid (v, u) = 0 \quad \forall u \in U\}$. Show that $\dim U + \dim U^{\perp} = 2n$ and conclude that all maximal t.i. subspaces have dimension n.
- (b) Let $I = \{1, \ldots, n\}$ and for each $i \in I$ let S_i denote a t.i. subspace of dimension i. Build a chamber system Δ by taking maximal nested sequences $S_1 \subset S_2 \subset \cdots \subset S_n$ of t.i. subspaces as chambers. As in our $A_n(k)$ example, two chambers $S_1 \subset S_2 \subset \cdots \subset S_n$ and $S'_1 \subset S'_2 \subset \cdots \subset S'_n$ are said to be *i*-adjacent if $S_j = S'_j$; for all $j \neq i$. (This is the building $C_n(k)$ as a chamber system.) As before, its geometric realization can be obtained by taking the t.i. subspaces as vertices, and taking all t.i. flags as simplices.
 - i. Construct the (labeled) geometric realization of $C_2(\mathbb{F}_2)$.
 - ii. Given the basis above, we obtain an apartment by taking every t.i. subspace spanned by a subset of this basis, and all nested sequences of such subspaces. Describe the geometric realization of an apartment of $C_3(k)$.
 - iii. What is the type M of the building $C_n(k)$? (Your answer will certainly depend on n.)
- 7. Let (W, S) be a Coxeter system.
 - (a) A reflection $t \in W$ is a conjugate in W of an element $s \in S$. Verify that t has order 2.
 - (b) The wall M_t in a Coxeter complex consists of all simplices fixed by t. (Here we are viewing t as an automorphism of the Coxeter complex obtained by left multiplication by t.) We say a gallery crosses M_t if t interchanges c_{i-1} with c_i for some $1 \le i \le k$. Show that a minimal gallery cannot cross a wall twice.
 - (c) Show that for two given chambers x, y, the number of times mod 2 that a gallery from x to y crosses a given wall is independent of gallery.