Geometric realizations of Coxeter groups and buildings

Xiangdong Xie Department of Mathematics and Statistics Bowling Green State University

June 24, 2019 University of North Carolina, Greensboro

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Overview

A building is a union of apartments, and an apartment is a copy of the Coxeter group. We first talk about geometric realizations of Coxeter groups.

(ロ) (同) (三) (三) (三) (○) (○)

Main topics:

- 1. The basic construction
- 2. Coxeter complex
- 3. Geometric reflection groups
- 4. Davis complex

Some examples

- 1. Dihedral groups;
- 2. Euclidean reflection groups;
- 3. Hyperbolic reflection groups

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

The basic construction I: Mirror structure

- **Def.** Let (W, S) be a Coxeter system, X a connected, Hausdorff top. space. A mirror structure on X over S is a collection $(X_s)_{s \in S}$, where each X_s is a non-empty, closed subset of X.
- The X_s are the mirrors. We always assume $X \neq \cup_{s \in S} X_s$.

Examples:

The idea of the basic construction is to glue |W|-many copies of *X* along mirrors.

(ロ) (同) (三) (三) (三) (○) (○)

The basic construction II For $x \in X$, let

$$S(x) = \{s \in S | x \in X_s\}.$$

Note that S(x) is empty for some $x \in X$. Define an equivalence relation on $W \times X$:

$$(w, x) \sim (w', x') \iff x = x' \text{ and } w^{-1}w' \in W_{\mathcal{S}(x)}.$$

So if $x \in X_s$, then $s \in S(x)$ and $(w, x) \sim (ws, x)$. So if two chambers are *s*-adjacent, then the corresponding copies of *X* are glued together via the identity map on X_s .

Equip *W* with the discrete top. and $W \times X$ with the product top., the basic construction is the quotient

$$\mathcal{U}(W, X) = W \times X / \sim$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

with the quotient top.

Examples:

Coxeter complex

Let (W, S) be a Coxeter system, and X a simplex with codimension-1 faces $\{\Delta_s | s \in S\}$ and mirrors $X_s = \Delta_s$. The corresponding basic construction $\mathcal{U}(W, X)$ is the Coxeter complex.

Example

Coxeter complex in general is not locally finite, for example, for

$$W = < s_1, s_2, s_3 | s_i^2 = 1, (s_1 s_2)^3 = (s_2 s_3)^3 = 1 > 1$$

(日) (日) (日) (日) (日) (日) (日)

Geometric reflection groups

Let \mathbb{X}^n be \mathbb{S}^n , \mathbb{E}^n or \mathbb{H}^n . A convex polytope $X \subset \mathbb{X}^n$ is a compact intersection of a finite number of closed half spaces in \mathbb{X}^n , with nonempty interior. The link of a vertex v is the (n-1)-dimensional spherical polytope obtained by intersecting X with a small sphere centered at v. Say X is simple if all its vertex links are simplices.

Theorem. Let *X* be a simple convex polytope in \mathbb{X}^n , $n \ge 2$. Let $\{X_i\}_{i \in I}$ be the collection of codimension-1 faces of *X*, with each face X_i supported by the hyperplane \mathcal{H}_i . Suppose that for all $i \ne j$, if $X_i \cap X_j \ne \emptyset$ then the dihedral angle between X_i and X_j is $\frac{\pi}{m_j}$ for some integer $m_{ij} \ge 2$. Put $m_{ii} = 1$ for every $i \in I$ and $m_{ij} = \infty$ if $X_i \cap X_j = \emptyset$. For each $i \in I$, let s_i be the isometric refelction of \mathbb{X}^n across the hyperplane \mathcal{H}_i . Let *W* be the group generated by $\{s_i\}_{i \in I}$. Then *W* has the presentation

$$W = < s_i | (s_i s_j)^{m_{ij}} = 1, \forall i, j \in I > .$$

Basic construction and geometric refelction groups

A group *W* is called a geometric reflection group if *W* is either a dihedral group or as in the above Theorem. Say *W* is spherical, Euclidean or hyperbolic if \mathbb{X}^n is \mathbb{S}^n , \mathbb{R}^n , or \mathbb{H}^n .

A building Δ of type (W, S) is called a spherical building, Euclidean building or hyperbolic building if W is a spherical, Euclidean or hyperbolic geometric reflection group. By replacing each chamber of the building with a copy of X, and then gluing two *s*-adjacent chambers via the identity map on the *s*-mirrors, we get a geometric realization of Δ . Now each apartment is a copy of X^n .

Davis complex I

Let (W, S) be a Coxeter system. For any subset $T \subset S$, let W_T be the subgroup generated by T.

The nerve *L* of (W, S) is the simplicial complex with vertex set *S*, where a subset $T \subset S$ spans a simplex iff W_T is finite. Let *L'* be the barycentric subdivision of *L*, and *X* be the cone over *L'*. For each $s \in S$, let X_s be the union of closed simplices in *L'* that contain *s*. The basic construction corresponding to this mirror structure is the Davis complex.

(ロ) (同) (三) (三) (三) (○) (○)

 Σ is locally finite.

Examples

Davis complex as a CW complex

A CW complex structure can be put on Σ inductively as follows. The vertex set is W. Two vertices w_1, w_2 are joined by an edge iff $w_2 = w_1 s$ for some $s \in S$. Hence the 1-skeleton is just the Cayley graph of (W, S). For any $s_i \neq s_j \in S$ satisfying $m_{ij} < \infty$ and any $w \in W$, we attach a 2-cell to the cycle $w, ws_i, ws_is_j, \dots, ws_is_j \dots s_i = ws_j, w$. In general, if $w \in W$ and $T \subset S$ is such that W_T is finite, we attach a (|T| - 1) cell to wW_T .

With a suitable metric on this CW-complex, Σ becomes a CAT(0) space. In particular, Σ is contractible.

Davis complex: Right angled case

A Coxeter group (W, S) is right angled if $m_{st} \in \{2, \infty\}$ for any $s \neq t \in S$.

Examples

In this case Σ admits a structure of *CAT*(0) cube complex. As above, the 1-skeleton of Σ is simply the Cayley graph of (*W*, *S*). For any $w \in W$ and any $s \neq t \in S$ with $m_{st} = 2$, attach a square to the 4-cycle *w*, *ws*, *wst*, *wsts* = *wt*, *w* in the Cayley graph. In general, for $w \in W$ and any subset $T \subset S$ with W_T finite, attach a |T|-cube to wW_T . The resulting Σ is a *CAT*(0) cube complex.