1) Find 3 minimal galleries from C to D and their types;
2) Find all walls that separate C and D;
3) Find (a) the relation between the length of minimal gallery from C to D and the cardinality of \(W(C, D) \), the set of walls that separate C and D.
 (b) How many times does each minimal gallery from C to D crosses each wall in \(W(C, D) \)?
 crosses each wall not in \(W(C, D) \)?
4) Formulate general statements generalizing (a), (b) above.
5) Find two non-minimal galleries from C to D and their types; verify the deletion condition.