Some basics on Coxeter groups and cross ratio on the boundary

Xiangdong Xie
Department of Mathematics and Statistics
Bowling Green State University

June 27, 2019
University of North Carolina, Greensboro

The plan

1. Cross ratio on the boundary;
2. Tits representation;
3. Deletion condition and exchange condition;
4. Longest element in a finite Coxeter group

Cross ratio on metric spaces

Classical cross ratio: for $a, b, c, d \in \mathbb{C} \cup\{\infty\}$,

$$
c r(a, b, c, d)=\frac{(a-d)(b-c)}{(a-c)(b-d)}
$$

Let X be a metric space, and $a, b, c, d \in X$, define

$$
\operatorname{cr}(a, b, c, d)=\frac{d(a, d) d(b, c)}{d(a, c) d(b, d)}
$$

Metric on the boundary of a tree

Let T be a tree, and $p \in T$. Define a metric on ∂T as follows: for $a \neq b \in \partial T$,

$$
d_{p}(a, b)=e^{-d(p, a b)}
$$

where $d(p, a b)$ is the distance from p to the geodesic $a b$.
It is easy to see that d_{p} satisfies the triangle inequality. In fact, d_{p} is an ultra metric:

$$
d_{p}(a, c) \leq \max \left\{d_{p}(a, b), d_{p}(b, c)\right\}
$$

For $a, b, c, d \in \partial T$ we have
$c r(a, b, c, d)=\frac{e^{-d(p, a d)} e^{-d(p, b c)}}{e^{-d(p, a c)} e^{-d(p, b d)}}=e^{d(p, a c)+d(p, b d)-d(p, a d)-d(p, b c)}$.

Cross ratio on the boundary of a tree

The cross ratio (cross difference) on ∂T :

$$
(a, b, c, d)=d(p, a c)+d(p, b d)-d(p, a d)-d(p, b c) .
$$

Exercise: (a, b, c, d) is independent of p, and is the signed distance from $m(a, b, c)$ to $m(a, b, d)$, with + sign if the direction from $m(a, b, c)$ to $m(a, b, d)$ is the same direction as from a to b, and - sign otherwise.

Theorem. A metric tree T with no vertex of valence one is determined up to isometry by the cross ratio on ∂T.

Trees associated with Euclidean buildings

Let Δ be a locally finite thick Euclidean building. Let Y be a wall in Δ. A subset Y^{\prime} is said to be parallel to Y if there is some $c \geq 0$ such that $d\left(y, Y^{\prime}\right)=c=d\left(y^{\prime}, Y\right), \forall y \in Y, \forall y^{\prime} \in Y^{\prime}$.

Let P_{Y} be the union of all the sets parallel to Y. A basic fact in $C A T(0)$ space is that P_{Y} splits isometrically as a product $P_{Y}=Y \times Z$ for some convex subset of Δ. Due to the dimension consideration it is easy to see that Z is a tree.

By the above discussion, the tree Z can be recovered from the cross ratio. This idea can be used to classify some Euclidean buildings.

Tits representation

Let (W, S) be a Coxeter system with Coxeter matrix $M=\left(m_{i j}\right)$. An injective homomorphism $W \rightarrow G L_{n}(\mathbb{R})$ (where $n=|S|$) due to Tits is constructed as follows.

Write $S=\left\{s_{1}, \cdots, s_{n}\right\}$. Fix a basis $\left(e_{i}\right), 1 \leq i \leq n$, for \mathbb{R}^{n}. Let B be the symmetric bilinear form determined by

$$
B\left(e_{i}, e_{j}\right)=-\cos \frac{\pi}{m_{i j}}
$$

Note $B\left(e_{i}, e_{i}\right)=1$ and $B\left(e_{i}, e_{j}\right) \leq 0$ for $i \neq j$.
Let H_{i} be the hyperplane $H_{i}=\left\{v \in \mathbb{R}^{n}: B\left(v, e_{i}\right)=0\right\}$. For each i, define $\sigma_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by:

$$
\sigma_{i}(v)=v-2 B\left(e_{i}, v\right) e_{i}
$$

Tits representation II

It is easy to check that $\sigma_{i}\left(e_{i}\right)=-e_{i}$ and fixes all points in H_{i}. So $\sigma_{i}^{2}=i d$. It can also be checked that $\sigma_{i} \sigma_{j}$ has order $m_{i j}$ for $i \neq j$. Hence the map $s_{i} \rightarrow \sigma_{i}$ defines a group homomorphism

$$
\rho: W \rightarrow G L_{n}(\mathbb{R})
$$

The map ρ is in fact injective. Hence all Coxeter groups are linear.

Selberg's lemma Finitely generated linear groups are virtually torsion free (have torsion free subgroups of finite index). Malcev's Theorem Finitely generated linear groups are residually finite.

Deletion and Exchange conditions

Let W be a group generated by a finite set of order 2 elements
$S \subset W$. Then the following are equivalent:

1. (W, S) is Coxeter system;
2. The deletion condition holds:
if $s_{1} s_{2} \cdots s_{k}$ is NOT a reduced word in S, then there are $i<j$ such that

$$
s_{1} \cdots s_{k}=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k}
$$

where \hat{s}_{i} means s_{i} is removed.
3. The exchange condition holds:
if $s_{1} \cdots s_{k}$ is a reduced word in S and $s \in S$, then either $I(s w)=k+1$ or there is some i such that $w=s s_{1} \cdots \hat{s}_{i} \cdots s_{k}$.

Longest element in a finite Coxeter group

Let (W, S) be a finite Coxeter group. Then:

1. There is unique element w_{0} with the maximal length;
2. Every reduced word in S arises as the initial word for w_{0}; that
is, for any $w \in W$, there is some $w^{\prime} \in W$ satisfying:
$l(w)+I\left(w^{\prime}\right)=I\left(w_{0}\right)$ and $w w^{\prime}=w_{0} ;$
3. $w_{0}^{2}=1$ and $w_{0} S w_{0}=S$.
