Low dimensional Euclidean buildings: III

Thibaut Dumont
University of Jyväskylä
June 2019 - UNCG

Table of Contents

Projective plane

Triangle Lattices

Score and the score algorithm

Improving the score

Radu's $\mathrm{C}++$ program and results

Long time ago, in a building far away

Finite projective plane

A building of type A_{2} is called a projective planes. It's a graph of diameter 3 and girth 6 with two type of vertices called points or lines.

- If it is finite, every vertex has the same number of neighbor, $q+1$ (with $q \geq 2$ if thick).
- A projective plane has $q^{2}+q+1$ vertices of each types (points or lines).
- A projective plane has $(q+1)\left(q^{2}+q+1\right)$ edges (chambers).

The game: Dobble

The game: Dobble

Triangle Lattices

Let Δ be a thick locally finite building of type \tilde{A}_{2}, shortly a triangle building.

- Let $q \geq 2$ denote the regularity parameter of Δ.
- Let $I=\{0,1,2\}$ denote the types and V_{i} the set of residues of type $\{j, k\}$ where $\{i, j, k\}=\{0,1,2\}$.
- In other words, V_{i} is the set of vertices of type i.
- The residues are finite projective plane of order q (equivalently a finite thick A_{2}-building).

Triangle Lattices

Let Γ be a group acting on Δ. Assume the action is:

- type-rotating: either $g \in G$ fixes all types or permutes them cyclically.
- simply-transitive on the set of vertices on $V=V_{0} \cup V_{1} \cup V_{2}$: for every $v, w \in V$ there is a unique g mapping v to w.
- The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^{n} acting on itself by translation).

Triangle Lattices

Let Γ be a group acting on Δ. Assume the action is:

- type-rotating: either $g \in G$ fixes all types or permutes them cyclically.
- simply-transitive on the set of vertices on $V=V_{0} \cup V_{1} \cup V_{2}$: for every $v, w \in V$ there is a unique g mapping v to w.
- The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^{n} acting on itself by translation).

Theorem (CMSZ)

Any such action gives a point-line correspondence and a compatible a triangular presentation. Conversely, any point-line correspondence in a projective plane admitting a triangular presentation yields a triangle building and a lattice as above.

Triangle Lattices

Generators and Relations

Let Γ act simply transitively on the set \mathscr{V} of vertices of a building Δ. Fix some $v_{0} \in \mathscr{V}$, and let \mathscr{N} denote the set $\left\{v \in \mathscr{V}: d_{\mathscr{V}}\left(v_{0}, v\right)=1\right\}$ of nearest neighbors of v_{0}, i.e. the vertex set of the residue of v_{0}. For each $v \in \mathscr{N}$, there must be a unique $g_{v} \in \Gamma$ such that $g_{v} v_{0}=v$. If $v \in \mathscr{N}$, then

$$
d_{\mathscr{V}}\left(g_{v}^{-1} v_{0}, v_{0}\right)=d_{\mathscr{V}}\left(v_{0}, g_{v} v_{0}\right)=1
$$

and so $g_{v}^{-1} v_{0} \in \mathscr{N}$. Write $g_{v}^{-1} v_{0}=\lambda(v)$. Then $g_{v}^{-1} v_{0}=g_{\lambda(v)} v_{0}$, so that

$$
g_{\lambda(v)}=g_{v}^{-1} \quad \text { for each } v \in \mathscr{N} .
$$

Note that $g_{\lambda(\lambda(v))}=g_{\lambda(v)}^{-1}=g_{v}$, so that $\lambda: \mathcal{N} \rightarrow \mathcal{N}$ is an involution. Suppose that $u, v \in \mathscr{N}$ and that $d_{\mathscr{V}}(\lambda(u), v)=1$. Then

$$
d_{\mathscr{V}}\left(v_{0}, g_{u} g_{v} v_{0}\right)=d_{\mathscr{V}}\left(g_{u}^{-1} v_{0}, g_{v} v_{0}\right)=d_{\mathscr{V}}(\lambda(u), v)=1
$$

Thus $g_{u} g_{v} v_{0} \in \mathscr{N}$. Write $g_{u} g_{v} v_{0}=\lambda(w)=g_{w}^{-1} v_{0}$. Then $g_{u} g_{v}=g_{w}^{-1}$, so that
$g_{u} g_{v} g_{w}=1$. Conversely, if $g_{u} g_{v} g_{w}=1$ for some $w \in \mathcal{N}$, then reversing the above steps, we see that $d_{\mathscr{V}}(\lambda(u), v)=1$ must hold. Let $\mathscr{T}=\left\{(u, v, w) \in \mathcal{N}^{3}: g_{u} g_{v} g_{w}=1\right\}$. Then
given $u, v \in \mathscr{N},(u, v, w) \in \mathscr{T}$ for some $w \in \mathscr{N}$ if and only if $d_{\mathscr{V}}(\lambda(u), v)=1$.

Triangle Presentation

Definition 2.1. Let P and L be the sets of points and lines respectively in a projective plane Π. A bijection $\lambda: P \rightarrow L$ is called a point-line correspondence in Π. A subset $\mathcal{T} \subseteq P^{3}$ is then called a triangle presentation compatible with λ if the two following conditions hold:

1. For all $x, y \in P$, there exists $z \in P$ such that $(x, y, z) \in \mathcal{T}$ if and only if $y \in \lambda(x)$ in Π. In this case, z is unique.
2. If $(x, y, z) \in \mathcal{T}$, then $(y, z, x) \in \mathcal{T}$.

Example 2.2. The projective plane $\mathrm{PG}(2,2)$ can be defined by $P=L=\mathbf{Z} / 7 \mathbf{Z}$ with line $x \in L$ being adjacent to the points $x+1, x+2$ and $x+4$ in P. Consider the point-line correspondence $\lambda: P \rightarrow L: x \in P \mapsto x \in L$ in Π. Then

$$
\mathcal{T}:=\{(x, x+1, x+3),(x+1, x+3, x),(x+3, x, x+1) \mid x \in P\}
$$

is a triangle presentation compatible with λ. Indeed, (ii) is obviously satisfied and, for $x, y \in P$, it is apparent that there exists (a unique) $z \in P$ such that $(x, y, z) \in \mathcal{T}$ if and only if $y \in\{x+1, x+2, x+4\}$, which is exactly the set of points on the line $\lambda(x)$.

Score

Definition 3.5. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π. A subset $\mathcal{T} \subseteq P^{3}$ is called a triangle partial presentation compatible with λ if the two following conditions hold:
(1) For all $x, y \in P$, if there exists $z \in P$ such that $(x, y, z) \in \mathcal{T}$ then $y \in \lambda(x)$ and z is unique.
(2) If $(x, y, z) \in \mathcal{T}$, then $(y, z, x) \in \mathcal{T}$.

We directly have the following.
Lemma 3.6. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π of order q. A subset $\mathcal{T} \subseteq P^{3}$ is a triangle presentation compatible with λ if and only if it is a triangle partial presentation compatible with λ and $|\mathcal{T}|=(q+1)\left(q^{2}+q+1\right)$.

Proof. This is clear from the definitions, since there are exactly $(q+1)\left(q^{2}+q+1\right)$ pairs $(x, y) \in P^{2}$ with $y \in \lambda(x)$.

We now define the score of a point-line correspondence as follows.
Definition 3.7. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π of order q. The score $S(\lambda)$ of λ is the greatest possible size of a triangle partial presentation compatible with λ.

Graph G_{λ}

3.1 The graph associated to a point-line correspondence

In the context of triangle presentations, it is natural to associate a particular graph to each point-line correspondence $\lambda: P \rightarrow L$ of a projective plane Π.

Definition 3.1. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π. The graph G_{λ} associated to λ is the directed graph with vertex set $V\left(G_{\lambda}\right):=P$ and edge set $E\left(G_{\lambda}\right):=\left\{(x, y) \in P^{2} \mid y \in \lambda(x)\right\}$.

For λ, admitting a triangle presentation can now be rephrased as a condition on its associated graph G_{λ}. In order to state this reformulation, we first define what we will call a triangle in a directed graph.

Definition 3.2. Let G be a directed graph. A set $\left\{e_{1}, e_{2}, e_{3}\right\}$ of edges in G such that the destination vertex of e_{1} (resp. e_{2} and e_{3}) is the origin vertex of e_{2} (resp. e_{3} and e_{1}) is called a triangle. If two of the three edges e_{1}, e_{2} and e_{3} are equal, then they are all equal. In this case, the triangle contains only one edge and is also called a loop.

Lemma 3.4. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π. There exists a triangle presentation compatible with λ if and only if there exists a partition of the set of edges $E\left(G_{\lambda}\right)$ of G_{λ} into triangles.

Proof. Via the above bijection, a partition of $E\left(G_{\lambda}\right)$ into triangles exactly corresponds to a triangle presentation compatible with λ.

Score of a Correlation

3.3 Scores of correlations

When $\lambda: P \rightarrow L, L \rightarrow P$ is a correlation of a (self-dual) projective plane Π of order q, i.e. a map such that $\lambda(p) \ni \lambda(\ell)$ if and only if $p \in \ell$, there is an explicit formula for the score of the point-line correspondence $\lambda: P \rightarrow L$.
Proposition 3.10. Let $\lambda: P \rightarrow L, L \rightarrow P$ be a correlation in a projective plane Π of order q. Let $a(\lambda)$ be the number of points $p \in P$ such that $\lambda^{3}(p) \ni p$ and let $b(\lambda)$ be the number of points $p \in P$ such that $\lambda^{3}(p) \ni p$ and $\lambda^{6}(p)=p$. Then

$$
S(\lambda)=(q+1)\left(q^{2}+q+1\right)-(2 q-3) \cdot a(\lambda)-b(\lambda) .
$$

Theorem 3.11 (Devillers-Parkinson-Van Maldeghem). Let $\lambda: P \rightarrow L, L \rightarrow P$ be a correlation in a finite projective plane Π. Then there exists $p \in P$ such that $p \in \lambda(p)$.

Score of a Correlation

\# of concerned λ	$a(\lambda)$	$b(\lambda)$	$S(\lambda)$	$s(\lambda)$ (mean)
6318	4	4	846	846.00
4212	10	2	758	757.97
6318	10	10	750	750.00
4212	16	0	670	669.92
6318	16	16	654	654.00
6318	22	22	558	558.00

Table 3.1: Scores of the correlations of the Hughes plane of order 9.

Score: Algorithm 1

While there exists $e \in E\left(G_{\lambda}\right)$ such that there is a unique triangle t in G_{λ} containing e, choose this triangle t, remove the edge(s) of t from G_{λ} and start again this procedure. If, at the end, there is no more triangles in G_{λ}, then we say that the score-algorithm succeeds and that the estimated score $s(\lambda)$ of λ is the number of edges that are covered by the chosen triangles. Otherwise, there still are triangles in G_{λ} but all edges are contained in 0 or at least 2 triangles. In this case, we say that the score-algorithm fails. For a pseudo-code, see Algorithm 1.

Score: Algorithm 1

```
Algorithm 1: Computing the estimated score \(s(\lambda)\) of \(\lambda\)
    1 score \(\leftarrow 0\);
    2 edgesInOneTriangle \(\leftarrow\) true;
    3 while edgesInOneTriangle \(=\) true do
        edgesInOneTriangle \(\leftarrow\) false;
        for \(e\) in \(E\left(G_{\lambda}\right)\) do
            if \(e\) is contained in exactly one triangle \(t\) of \(G_{\lambda}\) then
                edgesInOneTriangle \(\leftarrow\) true;
                remove the edge(s) of \(t\) from \(E\left(G_{\lambda}\right)\);
                if \(t\) is a loop then
                        score \(\leftarrow\) score +1 ;
                else
                    score \(\leftarrow\) score +3 ;
13 if there still are triangles in \(G_{\lambda}\) then
        return FAIL
    else
            return score
```


Improving the Score: Algorithm 2

Lemma 3.15. Let $\lambda: P \rightarrow L$ be a point-line correspondence in a projective plane Π of order q and let $a, b \in P$. Define $\lambda_{a, b}: P \rightarrow L$ by $\lambda_{a, b}(x):=\lambda(x)$ for all $x \in P \backslash\{a, b\}$, $\lambda_{a, b}(a):=\lambda(b)$ and $\lambda_{a, b}(b):=\lambda(a)$. Then $\left|S\left(\lambda_{a, b}\right)-S(\lambda)\right| \leq 6(q+1)$.

```
Algorithm 2: Finding a point-line correspondence \(\lambda\) with \(s(\lambda)=910\)
    \(\lambda \leftarrow\) some correlation of the Hughes plane;
    while \(s(\lambda)<910\) do
    visited \([\lambda] \leftarrow\) true;
    best \(A \leftarrow-1\); best \(B \leftarrow-1\);
    bestScore \(\leftarrow-1\);
    for \(a\) in \(P\) and \(b\) in \(P\) do
            if visited \(\left[\lambda_{a, b}\right]=\) false and \(s\left(\lambda_{a, b}\right)>\) bestScore then
            bestScore \(\leftarrow s\left(\lambda_{a, b}\right)\);
            best \(A \leftarrow a\);
            best \(B \leftarrow b\);
    \(\lambda \leftarrow \lambda_{\text {best } A, \text { best }} ;\)
    return \(\lambda\);
```


Results

λ	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9
0_{-}	20	0	44	75	78	77	50	76	37	3
1_{-}	54	39	30	8	88	68	18	34	65	57
2_{-}	70	82	42	23	38	90	81	13	61	69
3_{-}	73	4	83	22	58	28	59	55	64	60
4_{-}	56	2	87	84	26	45	53	11	80	41
5- $_{-}$	25	14	63	72	7	32	62	86	51	46
6- $_{-}$	36	27	31	29	79	33	16	71	85	24
7_{-}	89	35	17	19	5	47	67	10	66	43
8_{-}	6	21	1	52	74	40	12	48	9	15
9_{-}	49									

(6,69)			(82,18		,26,5	,36,58)		(8,57 36)
			1	123		5		
10,79,69)	(11,11,1	(11						
12,12,12)	(12,24,	(12,3	(12,4	(12,	(12,6	(12,80,	(12,	(12
13,31,48)	(13,46,35	$(13,52,26)$	(13,62,7	(13,67,27)	($13,75,5$	$(13,85,82)$	($13,86,6$	(14,
12,69)	($14,33,8$	(14, 11,37		(11,51,5				
	(15							
16,60,84)	(16,	$(16,70,36)$	(16,	(16	$(17,17,38)$	(17	$(17,59,70)$	(17,
$(17,68,40)$	(17,74,72)	$(18,22,42)$	$(18,29,39)$	(18,42,78)	($18,62,8$	$(18,87,62)$	(18,90,2	(19,22
19,79)	(19,34	(19,54,	($19,59,87$)					
1,80,77)	(22,71	$(22,74,63)$	(22	(2)	$(23,41,36)$	(23	$(23,58,90)$	
(23,86,28)	$(23,90,57$	($24,40,34$)	(24,51,8	$(24,81,84)$	(24,88,32)	$(25,25,25)$	($25,30,5$	
(25,47,48)	$(25,50,77)$	(25,57,56)	(25,61,2	$(25,74,49)$	$(26,39,55)$	$(26,45,76)$	($26,60,3$	
,66,77)	(27,31	, 41	$(27,54,29)$	7,74,6	(27.80,69)	(2788,		
($0,54,74$)	$(30,62,61$	($30,69,37)$		$(31,76,78)$	($31,78,3$	(31,8	1,9	
2,54,64)	$(32,66,72)$	$(33,33,33)$	$(33,40,51)$	$(33,47,46)$	$(33,59,56)$	$(33,72,39)$	$(33,75,61)$	(34,34,
(,50,39)	$(34,63,37)$	(34,88,47)	(34,90,35)	$(35,57,71)$	(35,62,4	$(35,70,86)$		
		78		52	89,51)			
(38,60,66)	(38,81,81)	$(38,85,85)$	$(39,49,41)$	($39,74,43)$	$(40,76,41)$	$(40,87,48)$	(42,47,4	(42,7
$(43,43,43)$	$(43,51,68)$	(43,59,64)	$(43,70,47)$	$(44,44,44)$	$(44,62,75)$	(44,74,80)	(44,79,47)	(45,45,
(5,68,69)	$(45,86,62)$	$(46,46,46)$	(46,71,76)	$(46,80,50)$	8,48,48	$(48,49,63)$	8,58,8	(48,65
	(49		$(49,89,59)$		73,51	7 G		17
($0,70,-1$	$(60,79,85)$	$(72,78,76)$	($79.79,79$)	($79,00,80)$	(65,781,87)	(86, $8,83,83)$	(8,88	$(69,78,72)$
70	($71,75,88$)	($72,78,76$)	$(79,79,79)$	$(79,90,89)$	$(80,81,87)$	83,83,8:		

Table B.2: Triangle presentation \mathcal{T} compatible with λ.

Results

A The Hughes plane of order 9

0	0	1	2	3	4	5	6	7	8	9
1	0	10	11	12	13	14	15	16	17	18
2	0	19	34	35	36	37	38	39	40	41
3	0	20	27	42	55	56	57	58	59	60
4	0	21	33	48	54	61	76	78	89	90
5	0	22	30	43	49	63	68	72	79	80
6	0	23	28	44	50	69	70	77	81	82
7	0	24	29	45	51	64	73	74	83	84
8	0	25	31	46	52	62	67	75	85	86
9	0	26	32	47	53	65	66	71	87	88
10	1	10	19	20	21	22	23	24	25	26
11	1	11	34	42	43	44	45	46	47	48
12	1	12	28	35	55	61	62	63	64	65
13	1	13	31	41	54	56	74	80	82	88
14	1	14	33	36	50	58	68	73	85	87
15	1	15	29	37	52	59	71	76	79	81
16	1	16	27	38	51	66	72	77	86	89
17	1	17	32	39	49	57	69	75	78	83
18	1	18	30	40	53	60	67	70	84	90
19	2	10	35	42	49	50	51	52	53	54
20	3	10	29	34	56	61	66	67	68	69
21	4	10	31	38	48	57	63	81	84	87
22	5	10	33	40	47	59	64	72	75	82
23	6	10	28	41	43	58	71	83	86	90
24	7	10	27	37	45	65	70	78	80	85
25	8	10	30	39	46	55	73	76	77	88
26	9	10	32	36	44	60	62	74	79	89
27	2	11	19	27	28	29	30	31	32	33
28	2	13	21	34	57	62	70	71	72	73
29	2	14	22	37	48	60	64	69	86	88
30	2	12	24	39	47	58	67	80	81	89
31	2	18	20	41	45	61	75	77	79	87
32	2	16	26	40	44	56	63	76	83	85
33	2	15	25	36	43	55	66	78	82	84
34	2	17	23	38	46	59	65	68	74	90
35	4	11	22	35	58	66	70	74	75	76
36	5	11	21	39	50	56	65	79	84	86
37	3	11	26	36	52	57	64	77	80	90
38	6	11	20	40	51	62	68	78	81	88
39	9	11	23	37	54	55	67	72	83	87
40	8	11	24	38	49	60	61	71	82	85
41	7	11	25	41	53	59	63	69	73	89
42	5	14	19	42	63	67	71	74	77	78
43	4	13	19	47	51	55	69	79	85	90
44	3	16	19	43	54	60	65	73	75	81
45	9	12	19	45	53	57	68	76	82	86

46	6	15	19	46	49	56	64	70	87	89
47	7	17	19	44	52	58	61	72	84	88
48	8	18	19	48	50	59	62	66	80	83
49	5	18	23	29	35	43	57	85	88	89
50	3	13	24	30	35	44	59	78	86	87
51	8	14	25	32	35	45	56	72	81	90
52	7	15	21	31	35	47	60	68	77	83
53	9	16	20	33	35	46	69	71	80	84
54	6	17	26	27	35	48	67	73	79	82
55	4	14	20	30	34	52	65	82	83	89
56	5	17	25	28	34	51	60	76	80	87
57	6	12	22	32	34	54	59	77	84	85
58	9	15	24	27	34	50	63	75	88	90
59	8	16	23	31	34	53	58	64	78	79
60	7	18	26	33	34	49	55	74	81	86
61	4	15	23	32	40	42	61	73	80	86
62	3	12	25	33	38	42	70	79	83	88
63	8	13	26	28	37	42	68	75	84	89
64	9	17	21	30	41	42	64	66	81	85
65	7	16	22	29	39	42	62	82	87	90
66	6	18	24	31	36	42	65	69	72	76
67	4	12	26	29	41	46	50	60	72	78
68	4	16	21	28	36	45	49	59	67	88
69	4	18	25	27	39	44	54	64	68	71
70	4	17	24	33	37	43	53	56	62	77
71	5	13	22	27	36	46	53	61	81	83
72	5	12	20	31	37	44	49	66	73	90
73	5	15	26	30	38	45	54	58	62	69
74	5	16	24	32	41	48	52	55	68	70
75	3	14	23	27	41	47	49	62	76	84
76	3	18	21	32	37	46	51	58	63	82
77	3	17	22	31	40	45	50	55	71	89
78	3	15	20	28	39	48	53	72	74	85
79	7	13	20	32	38	43	50	64	67	76
80	9	13	25	29	40	48	49	58	65	77
81	6	13	23	33	39	45	52	60	63	66
82	6	14	21	29	38	44	53	55	75	80
83	7	14	24	28	40	46	54	57	66	79
84	9	14	26	31	39	43	51	59	61	70
85	8	12	21	27	40	43	52	69	74	87
86	7	12	23	30	36	48	51	56	71	75
87	9	18	22	28	38	47	52	56	73	78
88	8	15	22	33	41	44	51	57	65	67
89	8	17	20	29	36	47	54	63	70	86
90	6	16	25	30	37	47	50	57	61	74

Radu's $\mathrm{C}++$ program

A few things to know about the $\mathrm{C}++$ code:

- Radu uses the fact that the lines $0,1,10$ and 30 generate the Hughes plane.
- It was too slow to check all pairs a, b, so he tests and selects only a few pairs. Especially the vertices for which few triangles have been used. He calls them bad vertices.
What the code does:
- Generates correlations until it finds one with a good score ≥ 750.
- Apply the improving algorithm, which permutes some a and b to see if it gets to the score max of 910 . (Keeps track of the permutations to not fall in a local maximum).
- If after 150 steps the score is still low, it moves on to the next correlation.
- Finite projective plane $A_{2}\left(\mathbb{F}_{2}\right)$.

Goal 1: Radu's lattice

- Finite projective plane $A_{2}\left(\mathbb{F}_{2}\right)$.

Goal 1: Radu's lattice

- A point-line correspondence λ forming pairs.

Goal 1: Radu's lattice

- The incidence relation: point \subset line

Goal 1: Radu's lattice

- A graph G_{λ} associated to the point line correspondence λ.

Goal 1: Radu's lattice

- The triangle presentation \mathcal{T} is a cover of G_{λ} by disjoint of triangles.

Goal 1: Radu's lattice

- Triangle can also mean loop.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- No triangle left, so we the triangle we removed form a cover of G_{λ}. Pretty lucky!

