Low dimensional Euclidean buildings: III

Thibaut Dumont

University of Jyväskylä

June 2019 – UNCG
Table of Contents

Projective plane

Triangle Lattices

Score and the score algorithm

Improving the score

Radu’s C++ program and results
Long time ago, in a building far away
Finite projective plane

A building of type A_2 is called a **projective planes**. It's a graph of diameter 3 and girth 6 with two type of vertices called **points** or **lines**.

- If it is finite, every vertex has the same number of neighbor, $q + 1$ (with $q \geq 2$ if thick).
- A projective plane has $q^2 + q + 1$ vertices of each types (points or lines).
- A projective plane has $(q + 1)(q^2 + q + 1)$ edges (chambers).
The game: Dobble
The game: Dobble
Triangle Lattices

Let Δ be a thick locally finite building of type \tilde{A}_2, shortly a **triangle building**.

- Let $q \geq 2$ denote the regularity parameter of Δ.
- Let $I = \{0, 1, 2\}$ denote the types and V_i the set of residues of type $\{j, k\}$ where $\{i, j, k\} = \{0, 1, 2\}$.
- In other words, V_i is the set of vertices of type i.
- The residues are finite projective plane of order q (equivalently a finite thick A_2-building).
Triangle Lattices

Let Γ be a group acting on Δ. Assume the action is:

- **type-rotating**: either $g \in G$ fixes all types or permutes them cyclically.
- **simply-transitive** on the set of vertices on $V = V_0 \cup V_1 \cup V_2$: for every $v, w \in V$ there is a unique g mapping v to w.
 - The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^n acting on itself by translation).
Triangle Lattices

Let Γ be a group acting on Δ. Assume the action is:

- **type-rotating**: either $g \in G$ fixes all types or permutes them cyclically.

- **simply-transitive** on the set of vertices on $V = V_0 \cup V_1 \cup V_2$: for every $v, w \in V$ there is a unique g mapping v to w.
 - The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^n acting on itself by translation).

Theorem (CMSZ)

Any such action gives a point-line correspondence and a compatible a triangular presentation. Conversely, any point-line correspondence in a projective plane admitting a triangular presentation yields a triangle building and a lattice as above.
Triangle Lattices

Generators and Relations

Let Γ act simply transitively on the set V of vertices of a building Δ. Fix some $v_0 \in V$, and let N denote the set $\{v \in V : d_V(v_0, v) = 1\}$ of nearest neighbors of v_0, i.e. the vertex set of the residue of v_0. For each $v \in N$, there must be a unique $g_v \in \Gamma$ such that $g_v v_0 = v$. If $v \in N$, then

$$d_V(g_v^{-1} v_0, v_0) = d_V(v_0, g_v v_0) = 1,$$

and so $g_v^{-1} v_0 \in N$. Write $g_v^{-1} v_0 = \lambda(v)$. Then $g_v^{-1} v_0 = g_{\lambda(v)} v_0$, so that $g_{\lambda(v)} = g_v^{-1}$ for each $v \in N$.

Note that $g_{\lambda(\lambda(v))} = g_{\lambda(v)}^{-1} = g_v$, so that $\lambda : N \rightarrow N$ is an involution. Suppose that $u, v \in N$ and that $d_V(\lambda(u), v) = 1$. Then

$$d_V(v_0, g_u g_v v_0) = d_V(g_u^{-1} v_0, g_v v_0) = d_V(\lambda(u), v) = 1.$$

Thus $g_u g_v v_0 \in N$. Write $g_u g_v v_0 = \lambda(w) = g_w^{-1} v_0$. Then $g_u g_v = g_w^{-1}$, so that

$$g_u g_v g_w = 1.$$ Conversely, if $g_u g_v g_w = 1$ for some $w \in N$, then reversing the above steps, we see that $d_V(\lambda(u), v) = 1$ must hold. Let $T = \{(u, v, w) \in N^3 : g_u g_v g_w = 1\}$. Then

given $u, v \in N, (u, v, w) \in T$ for some $w \in N$ if and only if $d_V(\lambda(u), v) = 1$.
Definition 2.1. Let P and L be the sets of points and lines respectively in a projective plane Π. A bijection $\lambda: P \to L$ is called a **point-line correspondence** in Π. A subset $\mathcal{T} \subseteq P^3$ is then called a **triangle presentation** compatible with λ if the two following conditions hold:

1. For all $x, y \in P$, there exists $z \in P$ such that $(x, y, z) \in \mathcal{T}$ if and only if $y \in \lambda(x)$ in Π. In this case, z is unique.

2. If $(x, y, z) \in \mathcal{T}$, then $(y, z, x) \in \mathcal{T}$.

Example 2.2. The projective plane $\text{PG}(2, 2)$ can be defined by $P = L = \mathbb{Z}/7\mathbb{Z}$ with line $x \in L$ being adjacent to the points $x + 1$, $x + 2$ and $x + 4$ in P. Consider the point-line correspondence $\lambda: P \to L: x \in P \mapsto x \in L$ in Π. Then

$$\mathcal{T} := \{(x, x + 1, x + 3), (x + 1, x + 3, x), (x + 3, x, x + 1) \mid x \in P\}$$

is a triangle presentation compatible with λ. Indeed, (ii) is obviously satisfied and, for $x, y \in P$, it is apparent that there exists (a unique) $z \in P$ such that $(x, y, z) \in \mathcal{T}$ if and only if $y \in \{x + 1, x + 2, x + 4\}$, which is exactly the set of points on the line $\lambda(x)$.
Definition 3.5. Let \(\lambda : P \rightarrow L \) be a point-line correspondence in a projective plane \(\Pi \). A subset \(\mathcal{T} \subseteq P^3 \) is called a triangle partial presentation compatible with \(\lambda \) if the two following conditions hold:

1. For all \(x, y \in P \), if there exists \(z \in P \) such that \((x, y, z) \in \mathcal{T} \) then \(y \in \lambda(x) \) and \(z \) is unique.
2. If \((x, y, z) \in \mathcal{T} \), then \((y, z, x) \in \mathcal{T} \).

We directly have the following.

Lemma 3.6. Let \(\lambda : P \rightarrow L \) be a point-line correspondence in a projective plane \(\Pi \) of order \(q \). A subset \(\mathcal{T} \subseteq P^3 \) is a triangle presentation compatible with \(\lambda \) if and only if it is a triangle partial presentation compatible with \(\lambda \) and \(|\mathcal{T}| = (q + 1)(q^2 + q + 1) \).

Proof. This is clear from the definitions, since there are exactly \((q + 1)(q^2 + q + 1)\) pairs \((x, y) \in P^2\) with \(y \in \lambda(x) \).

We now define the score of a point-line correspondence as follows.

Definition 3.7. Let \(\lambda : P \rightarrow L \) be a point-line correspondence in a projective plane \(\Pi \) of order \(q \). The score \(S(\lambda) \) of \(\lambda \) is the greatest possible size of a triangle partial presentation compatible with \(\lambda \).
3.1 The graph associated to a point-line correspondence

In the context of triangle presentations, it is natural to associate a particular graph to each point-line correspondence \(\lambda: P \to L \) of a projective plane \(\Pi \).

Definition 3.1. Let \(\lambda: P \to L \) be a point-line correspondence in a projective plane \(\Pi \). The **graph** \(G_\lambda \) associated to \(\lambda \) is the directed graph with vertex set \(V(G_\lambda) := P \) and edge set \(E(G_\lambda) := \{(x, y) \in P^2 \mid y \in \lambda(x)\} \).

For \(\lambda \), admitting a triangle presentation can now be rephrased as a condition on its associated graph \(G_\lambda \). In order to state this reformulation, we first define what we will call a **triangle** in a directed graph.

Definition 3.2. Let \(G \) be a directed graph. A set \(\{e_1, e_2, e_3\} \) of edges in \(G \) such that the destination vertex of \(e_1 \) (resp. \(e_2 \) and \(e_3 \)) is the origin vertex of \(e_2 \) (resp. \(e_3 \) and \(e_1 \)) is called a **triangle**. If two of the three edges \(e_1, e_2 \) and \(e_3 \) are equal, then they are all equal. In this case, the triangle contains only one edge and is also called a **loop**.

Lemma 3.4. Let \(\lambda: P \to L \) be a point-line correspondence in a projective plane \(\Pi \). There exists a triangle presentation compatible with \(\lambda \) if and only if there exists a partition of the set of edges \(E(G_\lambda) \) of \(G_\lambda \) into triangles.

Proof. Via the above bijection, a partition of \(E(G_\lambda) \) into triangles exactly corresponds to a triangle presentation compatible with \(\lambda \). \(\square \)
3.3 Scores of correlations

When \(\lambda: P \rightarrow L, \ L \rightarrow P \) is a correlation of a (self-dual) projective plane \(\Pi \) of order \(q \), i.e. a map such that \(\lambda(p) \ni \lambda(\ell) \) if and only if \(p \in \ell \), there is an explicit formula for the score of the point-line correspondence \(\lambda: P \rightarrow L \).

Proposition 3.10. Let \(\lambda: P \rightarrow L, \ L \rightarrow P \) be a correlation in a projective plane \(\Pi \) of order \(q \). Let \(a(\lambda) \) be the number of points \(p \in P \) such that \(\lambda^3(p) \ni p \) and let \(b(\lambda) \) be the number of points \(p \in P \) such that \(\lambda^3(p) \ni p \) and \(\lambda^6(p) = p \). Then

\[
S(\lambda) = (q + 1)(q^2 + q + 1) - (2q - 3) \cdot a(\lambda) - b(\lambda).
\]

Theorem 3.11 (Devillers–Parkinson–Van Maldeghem). Let \(\lambda: P \rightarrow L, \ L \rightarrow P \) be a correlation in a finite projective plane \(\Pi \). Then there exists \(p \in P \) such that \(p \in \lambda(p) \).
Score of a Correlation

<table>
<thead>
<tr>
<th># of concerned λ</th>
<th>$a(\lambda)$</th>
<th>$b(\lambda)$</th>
<th>$S(\lambda)$</th>
<th>$s(\lambda)$ (mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6318</td>
<td>4</td>
<td>4</td>
<td>846</td>
<td>846.00</td>
</tr>
<tr>
<td>4212</td>
<td>10</td>
<td>2</td>
<td>758</td>
<td>757.97</td>
</tr>
<tr>
<td>6318</td>
<td>10</td>
<td>10</td>
<td>750</td>
<td>750.00</td>
</tr>
<tr>
<td>4212</td>
<td>16</td>
<td>0</td>
<td>670</td>
<td>669.92</td>
</tr>
<tr>
<td>6318</td>
<td>16</td>
<td>16</td>
<td>654</td>
<td>654.00</td>
</tr>
<tr>
<td>6318</td>
<td>22</td>
<td>22</td>
<td>558</td>
<td>558.00</td>
</tr>
</tbody>
</table>

Table 3.1: Scores of the correlations of the Hughes plane of order 9.
While there exists $e \in E(G_\lambda)$ such that there is a unique triangle t in G_λ containing e, choose this triangle t, remove the edge(s) of t from G_λ and start again this procedure. If, at the end, there is no more triangles in G_λ, then we say that the score-algorithm succeeds and that the estimated score $s(\lambda)$ of λ is the number of edges that are covered by the chosen triangles. Otherwise, there still are triangles in G_λ but all edges are contained in 0 or at least 2 triangles. In this case, we say that the score-algorithm fails. For a pseudo-code, see Algorithm 1.
Algorithm 1: Computing the estimated score $s(\lambda)$ of λ

1. $score \leftarrow 0$
2. $edgesInOneTriangle \leftarrow true$
3. while $edgesInOneTriangle = true$ do
4. $edgesInOneTriangle \leftarrow false$
5. for e in $E(G_\lambda)$ do
6. if e is contained in exactly one triangle t of G_λ then
7. $edgesInOneTriangle \leftarrow true$
8. remove the edge(s) of t from $E(G_\lambda)$
9. if t is a loop then
10. $score \leftarrow score + 1$
11. else
12. $score \leftarrow score + 3$
13. end if
14. end if
15. end while
16. if there still are triangles in G_λ then
17. return $FAIL$
18. end if
19. return $score$
Improving the Score: Algorithm 2

Lemma 3.15. Let $\lambda: P \to L$ be a point-line correspondence in a projective plane Π of order q and let $a, b \in P$. Define $\lambda_{a,b}: P \to L$ by $\lambda_{a,b}(x) := \lambda(x)$ for all $x \in P \setminus \{a, b\}$, $\lambda_{a,b}(a) := \lambda(b)$ and $\lambda_{a,b}(b) := \lambda(a)$. Then $|S(\lambda_{a,b}) - S(\lambda)| \leq 6(q + 1)$.

Algorithm 2: Finding a point-line correspondence λ with $s(\lambda) = 910$

1. $\lambda \leftarrow$ some correlation of the Hughes plane;
2. **while** $s(\lambda) < 910$ **do**
 3. $\text{visited}[\lambda] \leftarrow$ true;
 4. $\text{bestA} \leftarrow -1; \text{bestB} \leftarrow -1;
 5. $\text{bestScore} \leftarrow -1;$
 6. **for** a in P **and** b in P **do**
 7. **if** $\text{visited}[\lambda_{a,b}] = \text{false and } s(\lambda_{a,b}) > \text{bestScore}$ **then**
 8. $\text{bestScore} \leftarrow s(\lambda_{a,b});$
 9. $\text{bestA} \leftarrow a;$
 10. $\text{bestB} \leftarrow b;$
 11. $\lambda \leftarrow \lambda_{\text{bestA}, \text{bestB}};$
3. **return** $\lambda;$
\begin{table}[h]
\centering
\begin{tabular}{|c|cccccccccc|}
\hline
λ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0. & 20 & 0 & 44 & 75 & 78 & 77 & 50 & 76 & 37 & 3 \\
1. & 54 & 39 & 30 & 8 & 88 & 68 & 18 & 34 & 65 & 57 \\
2. & 70 & 82 & 42 & 23 & 38 & 90 & 81 & 13 & 61 & 69 \\
3. & 73 & 4 & 83 & 22 & 58 & 28 & 59 & 55 & 64 & 60 \\
4. & 56 & 2 & 87 & 84 & 26 & 45 & 53 & 11 & 80 & 41 \\
5. & 25 & 14 & 63 & 72 & 7 & 32 & 62 & 86 & 51 & 46 \\
6. & 36 & 27 & 31 & 29 & 79 & 33 & 16 & 71 & 85 & 24 \\
7. & 89 & 35 & 17 & 19 & 5 & 47 & 67 & 10 & 66 & 43 \\
8. & 6 & 21 & 1 & 52 & 74 & 40 & 12 & 48 & 9 & 15 \\
9. & 49 & & & & & & & & & \\
\hline
\end{tabular}
\caption{Table B.2: Triangle presentation T compatible with λ.}
\end{table}
Results

A The Hughes plane of order 9

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>19</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>20</td>
<td>27</td>
<td>42</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21</td>
<td>33</td>
<td>48</td>
<td>54</td>
<td>61</td>
<td>76</td>
<td>78</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>22</td>
<td>30</td>
<td>43</td>
<td>63</td>
<td>68</td>
<td>72</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>23</td>
<td>28</td>
<td>44</td>
<td>50</td>
<td>69</td>
<td>79</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>24</td>
<td>29</td>
<td>45</td>
<td>51</td>
<td>64</td>
<td>74</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>25</td>
<td>31</td>
<td>46</td>
<td>52</td>
<td>67</td>
<td>75</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>26</td>
<td>32</td>
<td>47</td>
<td>53</td>
<td>65</td>
<td>66</td>
<td>71</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>10</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>11</td>
<td>34</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>28</td>
<td>35</td>
<td>55</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>13</td>
<td>31</td>
<td>41</td>
<td>54</td>
<td>56</td>
<td>74</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>14</td>
<td>33</td>
<td>36</td>
<td>50</td>
<td>56</td>
<td>88</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>15</td>
<td>29</td>
<td>37</td>
<td>52</td>
<td>59</td>
<td>71</td>
<td>76</td>
<td>79</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>16</td>
<td>27</td>
<td>38</td>
<td>51</td>
<td>60</td>
<td>72</td>
<td>77</td>
<td>86</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>17</td>
<td>32</td>
<td>30</td>
<td>49</td>
<td>57</td>
<td>69</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>18</td>
<td>30</td>
<td>40</td>
<td>53</td>
<td>66</td>
<td>70</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>10</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>10</td>
<td>29</td>
<td>34</td>
<td>56</td>
<td>61</td>
<td>66</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>10</td>
<td>31</td>
<td>38</td>
<td>48</td>
<td>63</td>
<td>81</td>
<td>84</td>
<td>87</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>10</td>
<td>33</td>
<td>40</td>
<td>47</td>
<td>59</td>
<td>64</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>10</td>
<td>28</td>
<td>44</td>
<td>43</td>
<td>58</td>
<td>71</td>
<td>83</td>
<td>86</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>10</td>
<td>27</td>
<td>37</td>
<td>45</td>
<td>65</td>
<td>79</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>10</td>
<td>30</td>
<td>39</td>
<td>46</td>
<td>55</td>
<td>73</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>10</td>
<td>32</td>
<td>36</td>
<td>44</td>
<td>60</td>
<td>62</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>27</td>
<td>11</td>
<td>11</td>
<td>29</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>23</td>
<td>47</td>
<td>58</td>
<td>67</td>
<td>80</td>
<td>81</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>29</td>
<td>14</td>
<td>22</td>
<td>37</td>
<td>48</td>
<td>60</td>
<td>64</td>
<td>69</td>
<td>86</td>
<td>88</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>12</td>
<td>24</td>
<td>39</td>
<td>47</td>
<td>58</td>
<td>67</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>32</td>
<td>18</td>
<td>20</td>
<td>41</td>
<td>45</td>
<td>61</td>
<td>75</td>
<td>77</td>
<td>79</td>
<td>87</td>
</tr>
<tr>
<td>31</td>
<td>17</td>
<td>23</td>
<td>38</td>
<td>46</td>
<td>59</td>
<td>65</td>
<td>68</td>
<td>74</td>
<td>79</td>
</tr>
<tr>
<td>34</td>
<td>21</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>58</td>
<td>66</td>
<td>70</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>11</td>
<td>21</td>
<td>30</td>
<td>50</td>
<td>56</td>
<td>65</td>
<td>79</td>
<td>84</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>11</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>57</td>
<td>64</td>
<td>77</td>
<td>80</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>11</td>
<td>20</td>
<td>40</td>
<td>51</td>
<td>62</td>
<td>68</td>
<td>78</td>
<td>81</td>
</tr>
<tr>
<td>39</td>
<td>9</td>
<td>11</td>
<td>23</td>
<td>37</td>
<td>54</td>
<td>55</td>
<td>67</td>
<td>72</td>
<td>83</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>11</td>
<td>24</td>
<td>38</td>
<td>49</td>
<td>60</td>
<td>64</td>
<td>71</td>
<td>82</td>
</tr>
<tr>
<td>41</td>
<td>7</td>
<td>11</td>
<td>25</td>
<td>41</td>
<td>53</td>
<td>59</td>
<td>63</td>
<td>69</td>
<td>73</td>
</tr>
<tr>
<td>42</td>
<td>5</td>
<td>14</td>
<td>19</td>
<td>42</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>13</td>
<td>19</td>
<td>47</td>
<td>51</td>
<td>55</td>
<td>69</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>16</td>
<td>19</td>
<td>43</td>
<td>54</td>
<td>60</td>
<td>65</td>
<td>73</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>9</td>
<td>12</td>
<td>19</td>
<td>45</td>
<td>53</td>
<td>57</td>
<td>66</td>
<td>76</td>
<td>82</td>
</tr>
</tbody>
</table>
Radu’s C++ program

A few things to know about the C++ code:

- Radu uses the fact that the lines 0, 1, 10 and 30 generate the Hughes plane.
- It was too slow to check all pairs a, b, so he tests and selects only a few pairs. Especially the vertices for which few triangles have been used. He calls them **bad** vertices.

What the code does:

- Generates correlations until it finds one with a good score ≥ 750.
- Apply the improving algorithm, which permutes some a and b to see if it gets to the score max of 910. (Keeps track of the permutations to not fall in a local maximum).
- If after 150 steps the score is still low, it moves on to the next correlation.
Finite projective plane $A_2(\mathbb{F}_2)$.
Goal 1: Radu’s lattice

- Finite projective plane $A_2(F_2)$.

![Diagram of a finite projective plane $A_2(F_2)$]
Goal 1: Radu’s lattice

- A point-line correspondence λ forming pairs.
Goal 1: Radu’s lattice

- The incidence relation: \(\text{point} \subset \text{line} \)
Goal 1: Radu’s lattice

- A graph G_{λ} associated to the point line correspondence λ.

![Graph](image-url)
Goal 1: Radu’s lattice

- The triangle presentation \mathcal{T} is a cover of G_λ by disjoint triangles.
Goal 1: Radu’s lattice

- Triangle can also mean loop.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

![Diagram of Radu's lattice]
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

![Diagram of Radu's lattice](image-url)
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

![Diagram of a lattice with arrows connecting points]
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.牛
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain T.
Goal 1: Radu’s lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.
Goal 1: Radu’s lattice

▶ No triangle left, so we the triangle we removed form a cover of G_λ. Pretty lucky!