Low dimensional Euclidean buildings

Thibaut Dumont
University of Jyväskylä
June 2019 - UNCG

Table of Contents

Motivation for low rank/dimension Euclidean building

Goal 1: Radu's lattice

Goal 2: An estimate motivated by buildings

Groups acting on buildings

Seen at the library of the University of Jyväskyä

> A university
> is just a group of buildings gathered around a library.
> -shelby Foote-

Motivation for low rank/dimension building

- Buildings were introduced by Belgian mathematician Jacques Tits to unify the classification of semi-simple Lie groups.
- Existence of particular subgroups B and N in an ambient group G.
- Tits recognized that B and N and their conjugates were living in G in an organized fashioned which could be encoded by a simplicial complex satisfying some properties.
- He extracted the axioms of building which are more general than the classical/algebraic setting of $B, N<G$.
- He later realized that only the chambers (maximal simplices) matter and the chamber system contains all the information.

Motivation for low rank/dimension building

Tits' classification: all spherical buildings ($|W|$ finite) of rank ≥ 3 and all Euclidean buildings of rank ≥ 4 :

- "There is always a big group of symmetries G with subgroups B, N." However in low rank (≤ 3), things are more flexible and allow for exotic behavior. So much so that there is no hope for classifying Euclidean buildings of rank 3 .

Motivation for low rank/dimension building

Tits' classification: all spherical buildings ($|W|$ finite) of rank ≥ 3 and all Euclidean buildings of rank ≥ 4 :

- "There is always a big group of symmetries G with subgroups B, N." However in low rank (≤ 3), things are more flexible and allow for exotic behavior. So much so that there is no hope for classifying Euclidean buildings of rank 3 .
- We will come back to the classification later.

Goal 1: Radu's lattice

In a paper of 2016, Nicolas Radu gave the first example of

- a cocompact lattice in a \widetilde{A}_{2}-building with non-Desarguesian residues Question asked by Kantor in 1986.

All the credit for the code and illustrations goes to him.

Goal 1: Radu's lattice

In a paper of 2016, Nicolas Radu gave the first example of a cocompact lattice in a \widetilde{A}_{2}-building with non-Desarguesian residues (answering a question of Kantor from 1986).

- Rank 2 residues in an \widetilde{A}_{2}-building are subbuildings of type A_{2} called projective planes.
- Projective planes of the form $A_{2}(k)$ satisfy Desargues' Theorem.
- A (cocompact) lattice is a discrete group acting on the building with finitely many orbits.
- A theorem of Cartwright-Mantero-Stegger-Zappa (CMSZ) shows that to find such building and lattice we can look for two combinatorial objects in a finite projective plane:
- A point-line correspondence $\lambda: P \rightarrow L$.
- A triangular presentation \mathcal{T} compatible with λ.

Goal 1: Radu's lattice

- CMSZ found all those triangular presentations in the case of $A_{2}\left(\mathbb{F}_{2}\right)$ and $A_{2}\left(\mathbb{F}_{3}\right)$ (up to equivalence).
- Radu took the smallest non-Desarguesian projective plane, Hughes plane, and made a search.
- His C++ search is not perfect and actually introduces inaccuracies to speed up the process and find the one example.

Goal 1: Radu's lattice

- CMSZ found all those triangular presentations in the case of $A_{2}\left(\mathbb{F}_{2}\right)$ and $A_{2}\left(\mathbb{F}_{3}\right)$ (up to equivalence).
- Radu took the smallest non-Desarguesian projective plane, Hughes plane, and made a search.
- His C++ search is not perfect and actually introduces inaccuracies to speed up the process and find the one example.

Goal: get familiar with the construction, the algorithm, $\mathrm{C}++$, and possibly improve to find new examples.

Goal 1: Radu's lattice

- Hughes plane of order $q=9$.

Goal 1: Radu's lattice

- Finite projective plane $A_{2}\left(\mathbb{F}_{2}\right)$.

Goal 1: Radu's lattice

- Finite projective plane $A_{2}\left(\mathbb{F}_{2}\right)$.

Goal 1: Radu's lattice

- A point-line correspondence λ forming pairs.

Goal 1: Radu's lattice

- The incidence relation: point \subset line

Goal 1: Radu's lattice

- A graph G_{λ} associated to the point line correspondence λ.

Goal 1: Radu's lattice

- The triangle presentation \mathcal{T} is a cover of G_{λ} by disjoint of triangles.

Goal 1: Radu's lattice

- Triangle can also mean loop.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- So we remove triangles (or loop) one by one to obtain \mathcal{T}.

Goal 1: Radu's lattice

- No triangle left, so we the triangle we removed form a cover of G_{λ}. Pretty lucky!

Goal 2: An estimate motivated by buildings

Let q, n be positive integers and $q \geq 2$.

Goal 2: An estimate motivated by buildings

Let q, n be positive integers and $q \geq 2$. Here are some functions $\mathbf{R} \rightarrow \mathbf{R}$:

- f_{n} piecewise linear and $h(x)=q^{-|x|}$.

Figure: Graph of f_{n}.

Figure: Graph of h.

Goal 2: An estimate motivated by buildings

- g represents a signed measure (on \mathbf{Z}):

$$
g(x)= \begin{cases}h(x) & \text { if } x \leq 0, \\ 1-2 x & \text { if } 0 \leq x \leq 1, \\ -h(x-1) & \text { if } 1 \leq x,\end{cases}
$$

Figure: Graph of g.

Goal 2: An estimate motivated by buildings

Finally:

- μ_{n} a positive weight function (on \mathbf{Z}):

$$
\mu_{n}(x)= \begin{cases}q^{|x|} & \text { if } x \leq 0 \\ 1 & \text { if } 0 \leq x \leq n, \\ q^{x-n} & \text { if } n \leq x,\end{cases}
$$

Goal 2: An estimate motivated by buildings

Let f_{n}, g, μ_{n} be as above and let P_{n} be defined as follows:

$$
P_{n}(i)=\sum_{k \in \mathbf{Z}} f_{n}(k) g(k-i)
$$

Theorem
This is a constant $C=C(q)$ such that for all $n \in \mathbf{N}$:

$$
\left\|P_{n}\right\|_{\ell^{2}\left(\mathbf{Z}, \mu_{n}\right)}^{2}=\sum_{i \in \mathbf{Z}} P_{n}(i)^{2} \mu_{n}(i) \leq C \cdot n .
$$

Groups acting on buildings

White board

