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Function Fields vs. Curves

Function fields vs. regular complete curves:

I Essentially boil down to the same thing - there is an
equivalence of categories.

I If base field is C then there is another equivalence of
categories, to compact Riemann surfaces and covering
maps.

I So using one term over the other is more a socialogical
question about one’s mathematical genesis or point of
view ...

I Best to know all three ...

Curves can also be singular, this gives some added ways of
expressing matters.

3 / 44

A reference for the equivalence of categories is Hartshorne, “Algebraic Geometry”, GTM
Springer, I.6 or Liu, “Algebraic Geometry and Arithmetic Curves”, OGTM, 2002, Propo-
sition 7.3.13.

Equivalence of categories means that up to isomorphism there is a bijection between
function fields and regular complete (projective) curves and between their structure pre-
serving maps that preserves identities and compositions. Properties that are invariant
under isomorphism can thus be defined and investigated for function fields and curves
alike.

Why talk function fields?

• There was an active German school porting algebraic number theory to the function
field case around 1930.

• This point of view continues to exist in the literature and research of algebraic
number theoretic type, e.g. in books of Eichler, Stichtenoth, Rosen, Villa Salvador,
Goss, Thakur, see catch word ”‘Arithmetic of Function Fields”’.

• Research and implementation of algorithms for number fields have been very active
and systematic since say 1990, e.g. Kant/Kash, Pari/GP and Magma. Those
number theoretic algorithms were ported successfully to the function field case.

• Hence the name of this summer school.

13



Why talk curves?

• Usually when the background or tools are more geometric, when singular curves
are required, or when the base field is not a finite field or is even not a field ...

• Hasse came from the algebraic number theory side, Weil used algebraic geometry
when proving Hasse-Weil.

• Serre gave a geometric development of class field theory.

• The theory of complex multiplication of Deuring started out function field theoretic
and was then turned curve theoretic.

• Algorithms for algebraic-geometric codes have mostly been approached via curves.

• In cryptography one talks elliptic and hyperelliptic curves, i.e. curve based cryp-
tography.

So when talk function fields and when curves?

• Depends on the situation and audience ...

• Algebraic geometry usually gives more tools and more ways of expressing matters
for function fields than algebraic number theory. If those are required, use curves.

• Curve notation can be overly technical, but is also often better known.

• Function field notation tends to be simpler and can be more to the point, if sufficient
for the purpose.

14
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Function Fields

Let K be a field. An algebraic function field of one variable is a
field extension F/K of transcendence degree one.

This means that there is x ∈ F such that x is transcendental
over K and F/K (x) is finite.

The exact constant field of F/K is the algebraic closure K ′ of
K in F .

The extension F/K ′ is also an algebraic function field of one
variable, the x from above is still transcendental over K ′ and
F/K ′(x) is finite.

In theory one can always assume w.l.o.g. that K ′ = K . In
practice one can not or should not.

4 / 44
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Separating Elements

The element x is called separating for F/K if F/K (x) is
separable. It is a theorem that if K is perfect then there is
always a separating element for F/K .

Fields of characteristic zero, finite fields and algebraically closed
fields are perfect. Any algebraic extension field of a perfect
field is perfect.

Example. The polynomial y 2 + x2 + t ∈ F2(t, x)[y ] is
irreducible and purely inseparable. Thus

F = F2(t, x)[y ]/〈y 2 + x2 + t〉

is a purely inseparable field extension of degree two of F2(t, x).
Then F/F2(t) is an algebraic function field without a
separating element.

5 / 44

The existence of a separating element is a special case of the notion of separability
for arbitrary field extensions F/K. See Fried and Jarden, Field Arithmetic or P. Cohn,
Basic Algebra: Groups, Rings and Fields, or Bosch, Algebra (in German). In geometric
contexts this is a refined version of Noether normalisation.

For the statements on perfect fields see any textbook on algebraic field extensions,
e.g. Lang, Algebra.

We cite some useful theorems in this context. Let K1/p be the K in characteristic
zero and the field of all p-th roots of elements of K if p = char(F ) > 0.

Theorem. A finitely generated field extension F/K has a separating transcendence basis
if and only if F/K and K1/p/K are linearly disjoint.

A finitely generated field extension F/K that satisfies the condition of the theorem it
is called regular.

Theorem. Let A be a finitely generated reduced K-algebra. Then the follwoing are equiv-
alent:

1. K1/p ⊗K A is reduced.

2. Kalg ⊗K A is reduced.

3. F ⊗K A is reduced for all field extensions F/K.

Theorem. Let A be a finitely generated integral K-algebra such that Kalg⊗KA is reduced.
Then Kalg ⊗K A is an integral domain if and only if K is algebraically closed in A.

Some references are an old version of the script of Milne on Algebraic Geometry or
Zariski and Samuel 1958, III 15, Theorem 40.
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Local rings and Points

We give a “function field” based approach to curves in the
spirit of Hartshorne I.6, including singular curves.

Let F/K be an algebraic function field. A subring of F/K is a
proper subring O of F with K× ⊆ O× and Quot(O) = F .

If O is subring of F/K and a local ring with maximal ideal m
we call it a point P of F/K with local ring OP = O and max-
imal ideal mP = m.

A place of F/K is regarded as point of F/K .

6 / 44
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Domination

Let P und Q be points of F/K . We say that P is dominated
by Q if OP ⊆ OQ and mP ⊆ mQ holds.

We define supp(P) as the set of places Q of F/K such that P
is dominated by Q.

Theorem. The sets supp(P) are non-empty and finite. The
residue class fields OP/mP are finite over K .

7 / 44

Proof. See Stichtenoth 1.1.19 for the existence of at most one place Q. But there are
only finitely many such places: First observe mP 6= 0 for otherwise OP is a field and then
OP = Quot(OP ) = F , hence OP is not a proper subring of F/K. Since K× ⊆ O×P we
also have (K ′)× ∩ OP ⊆ O×P . Thus any x ∈ mP with x 6= 0 is transcendental over K. If
Q dominates P then x ∈ Q. Since x has only finitely many zeros by Stichtenoth 1.3.4
the claim follows.

We know [OQ/mQ : K] < ∞ by Stichtenoth 1.1.15. Let φ : OP → OQ/mQ be the
composition of the inclusion and residue class epimorphism. Then ker(φ) = OP ∩ mQ ⊇
mP . Since mP is maximal and φ is the identity on K, we have ker(φ) = mP . Thus OP/mP

is an intermediate field of OQ/mQ and K, and hence also finite over K.

A local ring O with maximal ideal m satisfies O = O× ∪ m and O× ∩ m = ∅. In
the relation of domination the cases O×P ( O×Q and mP = mQ as well as O×P = O×Q and
mP ( mQ can indeed occur (see exercises).
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Sets of Points and Curves

We will only consider sets U of points of F/K that are

I admissible, i.e. almost all points of U are places.

I separated, i.e. for every place Q of F/K there is at most
one P ∈ U such that P is dominated by Q.

Let Uc denote the set of places of F/K that are not contained
in ∪P∈Usupp(P). Then U is called cofinite, complete, and
affine if Uc is finite, empty and non-empty respectively.

A curve C over K is an admissible separated cofinite set of
points of F/K .

The function field of C is K (C ) = F .

A point P ∈ C is regular if P is a place, otherwise singular.
The curve is regular if all points of C are regular.

8 / 44

These definitions capture what is usually called an irreducible algebraic curve over K.
The definition of sparated amounts to the usual valuational criterion of separatedness.
Likewise, the definition of complete amounts to the valuational criterion for properness
over Spec(K).

The maximal ideal mP of OP is regular if and only OP is a discrete valuation ring,
and this is case if and only if the OP/mP -vector space mP/m

2
P has dimension one. The

latter can usually be checked by the geometrically motivated Jacobian criterion, see Liu
“Algebraic Geometry and Arithmetic Curves”, OGTM, 2002, Proposition 3.30. A more
number theoretic test is the Dedekind criterion, see for example Cohen, “Algorithmic
Number Theory”, GTM, 1993.
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Subrings

Let P ∈ C and U ⊆ C . We define OC ,P = OP and

OC (U) = ∩P∈U OC ,P ,

where the empty intersection is defined as F .

Theorem. Suppose U is affine.

1. The rings OC (U) are subrings of F/K and the maps

P 7→ OC (U) ∩mP and m 7→ OC (U)m

give mutually inverse bijections from U to the set of
non-zero maximal ideals of OC (U).

2. Every point in U is regular if and only if OC (U) is a
Dedekind domain.

3. With DU(f ) = {P ∈ U | f 6∈ mP} for f ∈ OC (U),

OC (DU(f )) = OC (U)[f −1].

9 / 44

If R is a subring of F/K and U ⊆ R with 0 6∈ U , we write R[U−1] for the subring of
F/K generated by R and the inverses of all elements of U . If m is a maximal ideal of R
we write Rm = R[(R\m)−1]. If O is a local subring with maximal ideal, then O\m = O×,
so O = Om.

In more general contexts, OC(∅) is defined as the null ring.

Proposition 1.9.1. Let P be a point of F/K and SP = ∩Q∈supp(P )OQ. The conductor

fP = {x ∈ SP |xSP ⊆ OP}

of the ring extension SP/OP is a non-zero ideal of SP with fP ⊆ OP , and fP = OP if P
is a place.

Proof. The relevant statement here is the non-zeroness. The proposition can be proven
using the finiteness of the integral closure of finitely generated K-algebras (see Hartshorne
3.9A). We refer to Rosenlicht, “Equivalence Relations on Algebraic Curves”, Annals of
Math. vol. 56, 1952, pp. 169-191.

Theorem 1.9.2. Let U be an affine subset of C. Furthermore, let P, P1, . . . , Ps ∈ U be
pairwise distinct and d1 ∈ OC,P1 , . . . , ds ∈ OC,Ps non-zero. Then there is d ∈ O×C,P such
that d is a multiple of di in OC,Pi

for all 1 ≤ i ≤ s and d ∈ OC,Q for all Q ∈ U .

Proof. Proposition 1.9.1 shows that every ideal of SP contained in fP is also contained
in OP . Thus if x ∈ F and vQ(x) is sufficiently large for all Q ∈ supp(P ), then x ∈ fP ⊆
mP ⊆ OP .
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We may suppose that P, P1, . . . , Ps ranges over all points of U that are not places,
by choosing additional di = 1 if neccessary. Since U is affine, the Strong Approximation
Theorem in Stichtenoth can be applied and shows that there is d ∈ F with the following
properties: First, vQ(d− 1) is large for all Q ∈ supp(P ). Second, vQ(x/di) is large for all
Q ∈ supp(Pi) and 1 ≤ i ≤ s, and third vQ(x) ≥ 0 for all other Q ∈ U . The inital remark
then shows d− 1 ∈ mP , thus d ∈ O×C,P , and d/di ∈ OC,Pi

for all 1 ≤ i ≤ s so di divides d
in OC,Pi

. This proves the theorem.

Proof of Theorem of Slide. 1.: The ideal OC(U)∩mP is maximal, since OC(U)/OC(U)∩
mP is a K-algebra in OP/mP , which is algebraic over K, and hence a field. On the other
hand, OC(U)m is a local ring and it is clear that mOC(U)m ∩ OC(U) = m, so it remains
to show that OC(U)OC(U)∩mP

= OC,P .
The inclusion ⊆ is obvious. In order to prove ⊇, let x ∈ OC,P . Then x ∈ OC,Q for

almost all Q ∈ U , since x has only finitely many poles and almost all Q ∈ U are places.
Denote those finitely many points of U different from P and these Q by P1, . . . , Ps. Since
OC,Pi

is a subring of F/K there are di ∈ OC,Pi
non-zero with dix ∈ OC,Pi

for all i.
By Theorem 1.9.2 there is d ∈ O×C,P , which is a multiple of di in OC,Pi

and an
element of OC,Q for all Q as above. Then d, dx ∈ OC(U) and d 6∈ OC(U) ∩ mP . This
shows x = (dx)/d ∈ OC(U)OC(U)∩mP

, as required.
2.: First OC,P is noetherian and one-dimensional since by the theorem of the next

slide it is a localisation of a noetherian and one-dimensional ring. Furthermore, OC,P
is a regular local ring if and only if OC,P is a discrete valuation ring, see for example
Atiyah-Mcdonald, “Commutative Algebra”. In combination this gives the usual local
criterion for a ring to be a Dedekind ring.

3.: We have f 6∈ mP for all P ∈ DU(f), so f−1 ∈ OC,P and f−1 ∈ OC(DU(f)). Thus
OC(DU(f))[f−1] = OC(DU(f)). On the other hand, if f ∈ mP then OC,P [f−1] = F , since
this local ring cannot be dominated by a place. The following Lemma 1.9.3 then shows

OC(U)[f−1] = OC(DU(f))[f−1] ∩ (∩P∈U,f∈mP
OC,P [f−1]) = OC(DU(f)),

as was to be proven.

Lemma 1.9.3. Suppose R and S are subrings of a field F and let U ⊆ R ∩ S be multi-
plicatively closed with 1 ∈ U . Then

R[U−1] ∩ S[U−1] = (R ∩ S)[U−1].

Proof. Since R∩S ⊆ R and R∩S ⊆ S we have (R∩S)[U−1] ⊆ R[U−1] and (R∩S)[U−1] ⊆
S[U−1], so (R ∩ S)[U−1] ⊆ R[U−1] ∩ S[U−1].

Let x ∈ R[U−1] ∩ S[U−1]. Then there are r ∈ R, s ∈ S and u, v ∈ U such that

x =
r

u
=
s

v
=
rv

uv
=
us

uv

with rv ∈ R, us ∈ S and uv ∈ U . Since F has no zero divisors we conclude rv = us, so
rv = us ∈ R ∩ S and x ∈ (R ∩ S)[U−1].
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If R is a subring of F/K we define Specm(R) to be the set of
points of F/K defined by Rm where m ranges over the maximal
ideals of R.

Theorem. The map C 7→ OC (C ) gives an inclusion-reversing
bijection of the set of affine curves C over K with K (C ) = F
to the set of subrings R of F/K that are finitely generated
K -algebras. Its inverse is given by R 7→ Specm(R).

This provides the link to the usual definition of affine curves.

10 / 44

The theorem is basically the reason why one can compute with curves and function
fields.

Proof of Theorem of Slide. By Theorem 1.9.2 there is transcendental x ∈ OC(C). The
integral closure of K[x] in F is S = ∩P∈C,Q∈supp(P )OC,Q (see Stichenoth Theorem 3.2.6)
which contains OC(C). Then S and OC(C) are K[x]-modules and since S is finite over
K[x] by the finiteness of integral closures of finitely generated K-algebras, OC(C) is also
finite over K[x]. Thus OC(C) is a finitely generated K-algebra. The rest is left to the
reader.

Since OC(C) is a finitely generated K-algebra, it is noetherian. Let p 6= 0 be a prime
ideal of OC(C). Then there is a place P such that OP dominates OC(C)p. We obtain
the following monomorphisms of K-algebras

K → OC(C)/p→ OC(C)p/pOC(C)p → OP/mP .

Since OP/mP is algebraic over K, OC(C)/p must be a field. Hence p is maximal and
OC(C) one-dimensional.
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Curves as Topological Spaces∗

Let C be a curve over K . A subset U of C is called open if U
is empty or C\U is finite.

Theorem. Let C be a curve over K .

1. Then C with its open sets is a topological space.

2 Moreover, it is an irreducible, one-dimensional T1-space
and any open subset of C is quasicompact.

3. If C is affine the sets DC (f ) form a basis of the open sets
of C .

11 / 44

Proof of the theorem. 1.: The closed sets are precisely the finite sets of the whole space
C or C. Finite unions and arbitrary intersections of such sets are again such sets, hence
C is a topological space.

2.: If C is the union of two closed sets S1 and S2, then S1 = C or S2 = C since F/K
and hence C has infinitely many places or points respectively by Stichtenoth 1.3.2. This
shows that C is irreducible.

The chains of closed irreducible subsets are thus of the form C ⊇ {P} for P ∈ C,
hence the dimension of C is one.

If P,Q ∈ C are distinct then {P} is closed and U = C \{P} is open with Q ∈ U .
Thus C is a T1-space. Note that it is not a T2-space.

Let U ⊆ C open and let (Ui)i∈I be an open covering. Then U\Ui is finite, hence
finitely many Ui suffice to cover U . Thus U is quasicompact.

3.: Let U ⊆ C be open, P ∈ U and V = C\U closed and hence finite. Then by the
chinese remainder theorem there exists a non zero f ∈ OC(V ∪ {Q}) contained in every
mP for P ∈ V and not contained in mQ. Then Q ∈ DC(f) ⊆ U .
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Morphisms

Let X and Y be curves over K . A morphism φ : X → Y is
defined by a K -algebra monomorphism φ# : K (Y )→ K (X )
such that φ# restricts for each P ∈ X to

φ#
P : OY ,φ(P) → OX ,P .

Then φ(P) = (φ#
P )−1(P), and if U ⊆ Y we obtain by further

restriction
φ#(U) : OY (U)→ OX (φ−1(U)).

The degree of φ is deg(φ) = [K (X ) : φ#(K (Y ))].

12 / 44

In usual terms these morphisms are dominant morphisms. Morphisms which map X to
just one point of Y are not covered by our definition.
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Properties

Theorem.

1. φ has finite fibres and is continous.

2. If X is complete then Y is complete and OX (φ−1(U)) is
finite over OY (U).

3. If P ∈ X is regular and Y is complete, then any
morphism X\{P} → Y can be uniquely extended to a
morphism X → Y .

4. The map φ 7→ φ# gives a bijection of the sets of
morphismus X → Y of regular complete curves and of
K -algebra monomorphisms K (Y )→ K (X ).

If φ : X → Y is a morphism, one says that φ is separable or
that φ is ramified over Q ∈ Y etc., if the corresponding
properties hold for the extension K (X )/φ#(K (Y )) and
involved places.

13 / 44

We extend the notion of domination to arbitrary local rings. Any local K-algebra in
F is then still dominated by only finitely many places of F/K.

Proof of Theorem of Slide. 1.: The fibres are finite because there are only finitely many
places of K(X) that dominate any given OY,P , and each such place gives rise to at most
one point in the fibre.

Thus the preimage of finite sets under φ are finite and so preimages of closed sets are
closed again, hence φ is continous.

2.: Let P be a place of K(Y ). Then there is a place Q of K(X) dominating it where
we regard K(Y ) embedded into K(X) according to φ. Since X is complete, there is
precisely one point Q′ ∈ X which is dominated by Q. Now φ(Q′) ∈ Y is dominated by
P , hence Y is complete.

Similar like before, OX(φ−1(U)) is contained in the integral closure of OY (U). The
integral closure and then OX(φ−1(U)) are finite over OY (U).

3. and 4. are left to the reader.
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Example

Let F/K be the rational function field over K .

We define A1 as the set of places of F/K corresponding to the
maximal ideals of K [x ], where x is a generator of F/K . This is
a regular affine curve.

We define P1 as the set of places of F/K . This is a regular
complete curve.

There is a bijection between the set of generators of F/K and
the set of morphisms A1 → P1 of degree one.

14 / 44
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Normalisation

Let C be curve over K .

The normalisation C̃ of C is the set of places of K (C ) that
dominate points of C .

There is a morphism φ : C̃ → C of degree one, mapping each
place to the point of C that it dominates.

The normalisation C̃ of C is a regular curve. If C is complete
then C̃ is also complete.

OC̃ (φ−1(U)) is the integral closure of OC (U) in K (C ).

Normalisation is thus also desingularisation!

15 / 44

In higher dimensions (not the curve case), normalisation is not sufficient for desingulari-
sation.
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Representation and Definition of

Function Fields and Curves
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General Idea

Task: Represent

I (irreducible) complete regular curve C over a field K , with

I morphism φ : C → P1 of degree n.

This can be done using K [x ]-algebras that are finitely
generated, free modules over K [x ] of rank n, called K [x ]-orders.

Advantages and disadvantages:

I Linear algebra over K [x ] vs. Gröbner basis computations.

I Many existing algorithms from algebraic number theory,
e.g. normalisation, ideal arithmetic, valuations, residue
class fields, different etc.

There are of course other approaches and points of view
(projective, geometric, Khuri-Makdisi).

17 / 44
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Representation using orders

We embed K (P1) via φ∗ into K (C ) and choose x ∈ K (P1) to
correspond to φ. The pole of x in P1 is denoted by ∞.

Thus have function field K (C )/K and field extension
K (C )/K (x) of degree n.

Cover P1 by two affine open subsets U0, U∞ isomorphic to A1

with OP1(U0) = K [x ] and OP1(U∞) = K [1/x ].

Then V0 = φ−1(U0) and V∞ = φ−1(U∞) are open affines that
cover C .

18 / 44
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Representation using orders

Write R0 = OC (V0) and R∞ = OC (V∞).

We know that R0 is finite over K [x ] = OP1(U0) and R∞ is
finite over K [1/x ] = OP1(U∞).

Thus R0 and R∞ are K [x ]- and K [1/x ]-orders of rank n.

We can fix bases of R0 and R∞ of length n whose relation
ideals are generated by quadratic polynomials (and form a
Gröbner basis).

These bases are related by a transformation matrix in K (x)n×n,
which describes the overlap (glueing) of V0 and V∞.

19 / 44
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Definition Via Affine Curve

How do we explicitly define such a C as above?

Start with

I (irreducible) affine algebraic curve C0 over a field K ,

I a finite map α0 : C0 → A1.

Then complete and normalise!

Representation of C0:

I Coordinate ring R0 of C0 as quotient of polynomial ring by
suitable ideal such that R0 is K [x ]-order.

I Often αi = y i with f (x , y) = 0 and f irreducible, monic
and of degree n in y .

Example. f (x , y) = y 2 − x7 + 1.

20 / 44

If we start with C0 only, we may in general construct a finite map C0 → A1 by Noether
normalisation.

32



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Completion Step

Complete as follows:

I Divide generators of R0 by suitable powers of x such that
they become integral over K [1/x ] and hence resulting
relations are also defined over K [1/x ].

I Results in K [1/x ]-order R∞.

I Then have C0 = Specm(R0), C∞ = Specm(R∞) and
α0 : C0 → A1, α∞ : C∞ → A1.

I Since R0 is integral over K [x ], every zero of x dominates a
maximal ideal of R0.

I Since R∞ is integral over K [1/x ], every pole of x
dominates a maximal ideal of R∞.

I This combines (glues) to a complete curve
C0,∞ = C0 ∪ C∞ and morphism α : C0,∞ → P1.

21 / 44

It is also possible to complete C0 to a projective curve. This usually gives a different
completed curve and a priori more than two affine open subsets.
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Completion Step

Example.

I C0 : y 2 = x7 − 1.

I y/x4 is integral over Q[1/x ]: (y/x4)2 = 1/x − (1/x)8.

I Thus R0 = K [x , y ], R∞ = K [1/x , y/x4], and

I C0,∞ = Specm(R0) ∪ Specm(R∞).

I Is regular in characteristic 6= 2, 7.
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In weighted homogenous coordinates we get C0,∞ : y2 = zx7 − z8.
In comparison, the projective closure of C0 would be the union of the three affine

curves C0 = Specm(K[x, y]), C1 = Specm(K[1/x, y/x]) and C2 = Specm(K[1/y, x/y]).
The defining equations for C1 and C2 are here (1/x)5(y/x)2 = 1 − (1/x)7 and (1/y)5 =
(x/y)7 − (1/y)7. The homogenous equation is C1 ∪ C2 ∪ C3 : z5y2 = x7 − z7.

Since K[x, y] is integral over K[x], C0 is only missing maximal ideals dominated by
poles of x. But no pole of x dominates a maximal ideal of C1, so C1 ⊆ C0. The poles of
x are precisely the poles of y. Every such pole dominates the maximal ideal 〈1/y, x/y〉 of
K[1/y, x/y]. The equation shows that this maximal ideal corresponds to a singular point
of C2. So the projective closure of C0 is the union of the two affine curves C0 and C2,
where C2 is always singular.

Exercise: Can the equations be modified such that all three of C0, C1 and C2 are
necessary for completing C0?
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Normalisation Step

Normalise and hence desingularise C0,∞ as follows:

I Compute R̃0 = Cl(R0,K (C0)), R̃∞ = Cl(R∞,K (C0)).

I The normalisations of C0 and C∞ are C̃0 = Specm(R̃0)
and C̃∞ = Specm(R̃∞).

I Define C = C̃0 ∪ C̃∞. This gives the regular complete
curve C and the normalisation morphism β : C → C0,∞.

I Composing yields the morphism φ = α ◦ β : C → P1.

Data to be stored: Defining relations for R0, transformation
matrices between bases of R0 and R∞, between bases of R̃0

and R0, and between bases of R̃∞ and R∞. These matrices are
in K (x)n×n or even K [x ]n×n.

23 / 44
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Normalisation Algorithms

There are various normalisation and desingularisation algo-
rithms. Some require α to be separable, K to be perfect or
even char(K ) = 0.

Some references:

I Zassenhaus (Round2, Round4)

I Grauert-Remmert (Decker, ...)

I van Hoeij

I Montes-Nart

I Chistov: Polynomial time equivalent to factoring
discriminant of f .

Recent activity:

I J. Bauch: Computation of Integral Bases, 2015.

I Singular Group at Kaiserslautern, 2015.

I What is when the fastest method?

24 / 44
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Magma

Let ∞ denote the pole of x in P1 and O∞ the local ring of ∞.

In Magma and its function field package,
I R0 and R∞O∞ are called finite and infinite (equation)

orders, R̃0 and R̃∞O∞ are called finite and infinite
maximal orders.

I Places are uniquely represented as maximal ideals in the
maximal orders, by explicit generators.

I The poles of x are called places at infinity.
I A host of algorithms from algebraic number theory is quasi

readily available, e.g. integral closures, valuations, residue
class fields.

These objects are more considered of internal type. One can
work with places rather like in Stichtenoth, without knowing
those background details.

There is a curve data type in Magma, but it is different from
(although equivalent to) that presented here.

25 / 44

One convenient reason for using R̃∞O∞ instead of R̃∞ is that Specm(R̃0) and Specm(R̃∞O∞)
are disjoint, whereas Specm(R̃0) and Specm(R̃∞) are not disjoint. The representation of
a place as a maximal ideal is thus unique.
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Global Sections,

Riemann-Roch and an Application
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Start with function field F/K and divisor D of F/K .

Compute the K -vector space

L(D) = {f ∈ F× | div(f ) ≥ −D} ∪ {0}
of global sections of D !

Approaches are based on:
I Curves and Brill-Noether method of adjoints
I Integral closures and series expansions
I Sheaves and Grothendiecks theorem

Recent activity:
I J. Bauch: Lattices over Polynomial Rings and Applications

to Function Fields, 2014.
I I. Stenger: Computing Riemann-Roch Spaces - a

geometric approach, 2014.
27 / 44
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Sheaves

Let C be a curve over K with function field F .

Let M an F -vector space and FP submodules of the OC ,P -mo-
dules M such that FFp = M for all P ∈ C and each f ∈ M is
contained in almost all FP . Define

F(U) = ∩P∈UFP ,

where the empty intersection is defined as M.

Each F(U) is a torsion-free OC (U)-module and F is called a
sheaf of locally torsion-free OC -modules.

The elements of F(U) are called sections over U, and global
sections when U = C .

Example. OC is such a sheaf, or better a sheaf of rings, and is
called structure sheaf of C .

28 / 44

In addition, the modules FP are called stalks of F at P and their elements germs.
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Theorem. Let F be a sheaf of locally torsion-free OC -mo-
dules.

1. We have

F(U) ⊆ F(V ) and F(U) = ∩i∈IF(Ui )

for V ⊆ U and for any family (Ui )i∈I with U = ∪i∈IUi .

2. For all U ⊆ C affine, P ∈ U and m the corresponding
maximal ideal of OC (U),

F(U)m = FP .

3. For all U ⊆ C affine and f ∈ OC (U),

F(DU(f )) = F(U)[f −1].

29 / 44

If R is a subring of F/K, A an R-submodule in the F -vector space M and U ⊆ R
with 0 6∈ U , we write A[U−1] = R[U−1] ·A for the R[U−1]-submodule of M generated by
A. If m is a maximal ideal of R we write Am = A[(R\m)−1]. If R is local then Am = A.

Proof of Theorem of Slide. 1.: This is immediate from the definitions.
2.: It is clear that F(U)m ⊆ FP because OC(U)m ⊆ OP . Let x ∈ FP . Then x ∈ FQ

for almost all Q ∈ U . Write Pi for those finitely many points of U where Pi ist not regular
or x 6∈ FPi

. There are di ∈ OC,Pi
non-zero with dix ∈ FPi

. By Theorem 1.9.2 here is
d ∈ OC(U)\m and dx ∈ F(U). Then x = (dx)/d ∈ F(U)m.

3.: We have f ∈ OC(DU(f))×, so OC(DU(f))[f−1] = OC(DU(f)) and

F(DU(f))[f−1] = OC(DU(f))[f−1]F(DU(f)) = F(DU(f)).

On the other hand, if f ∈ mP then

FP [f−1] = OC,P [f−1]FP = FFP = M.

The following Lemma 1.29.1 shows

F(U)[f−1] = F(DU(f))[f−1] ∩ (∩P∈U,f∈mP
FP [f−1]) = F(DU(f)),

as was to be proven.

Lemma 1.29.1. Suppose R and S are subrings of a field F and let U ⊆ R ∩ S be
multiplicatively closed with 1 ∈ U . Let M be an R-submodule and N an S-submodule
inside a joint F -vector space. Then

M [U−1] ∩N [U−1] = (M ∩N)[U−1].

41



Proof. Since M ∩ N ⊆ M and M ∩ N ⊆ N we have (M ∩ N)[U−1] ⊆ M [U−1] and
(M ∩N)[U−1] ⊆ N [U−1], so (M ∩N)[U−1] ⊆M [U−1] ∩N [U−1].

Let x ∈M [U−1] ∩N [U−1]. Then there are r ∈M , s ∈ N and u, v ∈ U such that

x =
r

u
=
s

v
=
rv

uv
=
us

uv

with rv ∈ M , us ∈ N and uv ∈ U . Since M is an F -vector space, we conclude rv = us,
so rv = us ∈M ∩N and x ∈ (M ∩N)[U−1].

The theorem shows that F is quasi-coherent. The converse would also be true.
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A sheaf F of locally torsion-free OC -modules is said to be
locally finitely generated if all FP are finitely generated and if
each basis of M is also a basis of FP for almost all P ∈ C .

Theorem. Let F be a sheaf of locally torsion-free and finitely
generated OC -modules. Then each F(U) for U affine is finitely
generated.

Example. The structure sheaf OC is locally torsion-free and
finitely generated.

30 / 44

Proof of Theorem of Slide. Let x1, . . . , xn be an F -basis of M . Then x1, . . . , xn ∈ FP for
almost all P ∈ U . By Theorem 1.9.2 there is d ∈ OC(U) non-zero such that dx1, . . . , dxn ∈
F(U). By assumption, the dx1, . . . , dxn are a basis of FP for almost all P ∈ U . Denote
by P1, . . . , Ps the missing points in U . Each FPi

is finitely generated, so by Theorem 1.9.2
there is di ∈ O×C,Pi

such that the product of the generators of FPi
and di gives generators

of FPi
which are elements of F(U). Putting all those generators together yields finitely

many elements of F(U) which generate FP for all P ∈ U .
Let N be the submodule of F(U) generated by these finitely many elements. Then

NmP
= FP = F(U)mP

,

and the mP run through all maximal ideals of OC(U). This shows N = F(U) and hence
F(U) is finitely generated.

The theorem shows that if F is locally torsion-free and finitely generated then F is
coherent. The converse is also true here.
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Sheaf of a divisor

Let C denote a regular complete curve with function field F
and D a divisor of C resp. F/K .

The sheaf OC (D) associated to D is defined by

OC (D)(U) = {f ∈ F× | vP(f ) ≥ vP(−D) for all P ∈ U} ∪ {0}.

It is a locally torsion-free and finitely generated sheaf of
OC -modules with

L(D) = OC (D)(C ).

In other words, the OC (D)(U) are non-zero fractional ideals of
the Dedekind domains OC (U).

31 / 44

SinceOC,P is a discrete valuation ring and hence a principal ideal domain, theOC(D)P
are each generated by one element, namely π

−vP (D)
P where πP is a generator of mP , hence

are finitely generated. Moreover, OC(D)P = OC,P for almost all P ∈ C and if x ∈ F×
then x ∈ O×C,P for almost all P ∈ C. Thus x is a basis of OC(D)P for almost all P ∈ C
and the conditions are met.
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Representation using two free modules

Since V0 and V∞ are an open affine cover of C , the sheaf F
can be represented by the torsion-free finitely generated
modules F(V0) of R0 and F(V∞) of R∞ and

F(C ) = F(V0) ∩ F(V∞).

The modules F(V0) and F(V∞) are also torsion-free and
finitely generated K [x ]- and K [1/x ]-modules and thus are free
of rank n dimF (M) inside the K (x)-vector space M of
dimension n dimF (M). They can thus be explicity described by
their bases.

To compute the intersection we need to find all f ∈ M which
can be written as a K [x ]-linear combination of the basis of
F(V0) and as a K [1/x ]-linear combination of the basis of
F(V∞) simultaneously.

32 / 44
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Diagonalisation

The key proposition is as follows:

Proposition. Let A ∈ GL(n,K [x , 1/x ]). Then there are
S ∈ GL(n,K [x ]) and T ∈ GL(n,K [1/x ]) such that

TAS = (xdi δi ,j)i ,j

with d1 ≥ · · · ≥ dn uniquely determined.

The proof essentially uses

I matrix reduction (Dedekind-Weber, weak Popov form,
lattice reduction in function fields),

I or Birkhoff’s matrix decomposition.

Thus need to find λ ∈ K [x ] such that x−dλ ∈ K [1/x ]. These
are precisely the λ ∈ K [x ] with deg(λ) ≤ d .

33 / 44

For a proof and references see F. Hess, “Computing Riemann-Roch spaces in algebraic
function fields and related topics”, J. Symbolic Comp. 33(4): 425-445, 2002.

The proposition appears in Birkhoff apparently in

Birkhoff, G.: A theorem on matrices of analytic functions. Math. Ann., 74, no. 1,
122133 (1913)

Birkhoff, George David (1909), “Singular points of ordinary linear differential equa-
tions”, Transactions of the American Mathematical Society 10 (4): 436470,

G. D. Birkhoff, The generalized Riemann problem for linear differential equations and
the allied problems for linear difference and q-difference equations, Proc. Amer. Acad.
Arts and Sci. 49 (1913), 531-568.

Further references

https://www.encyclopediaofmath.org/index.php/Birkhoff_factorization
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Denote by F(r) the sheaf defined by

F(r)(V0) = F(V0) and F(r)(V∞\V0) = x r · F(V∞\V0).

Theorem. Recall n = [K (C ) : K (x)]. There exist K (x)-linearly
independent f1, . . . , fn ∈ M and uniquely determined
d1 ≥ · · · ≥ dn such that for all r :

F(r)(C ) =

{
n∑

i=1

λi fi |λi ∈ K [x ] and deg(λi ) ≤ di + r

}
.

Moreover,

I the f1, . . . , fn are a K [x ]-basis of F(V0) and

I the xd1f1, . . . , x
dn fn are a K [1/x ]-basis of F(V∞).

These bases are called reduced.

34 / 44

For the proof with F = OC(D) see F. Hess, “Computing Riemann-Roch spaces in alge-
braic function fields and related topics”, J. Symbolic Comp. 33(4): 425-445, 2002. The
case of general C and F is analogous, or see Grothedieck’s theorem.

This shows by the way that the K-vector space F(C) has finite dimension if (and
only if) the curve C is complete.

All constituents of the theorem can be computed by Magma, see Magma’s intrinsic
ShortBasis.
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Push Forward of a Sheaf∗

Let φ : X → Y be a morphism of the curves X and Y , and F a
locally torsion-free sheaf of OX -modules.

We define the push forward φ∗(F) of F along φ via

φ∗(F)(U) = F(φ−1(U))

for any U ⊆ Y .

Theorem. Then φ∗(F) is a locally torsion-free sheaf of
OY -modules. If X is complete and F is finitely generated, then
φ∗(F) is also finitely generated.

35 / 44

Proof. We have seen that if X is complete then Y is complete and OX(φ−1(U)) is finite
over OY (U). Since F(φ−1(U)) is finite over OX(φ−1(U)), we thus see that F(φ−1(U)) is
also finite over OY (U).
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Isomorphisms of Sheaves∗

Let F and G be sheaves of OC -modules inside the F -vector
spaces M and N respectively.

A morphism f : F → G is given by an F -linear map M → N
that restricts to OX ,P -module homomorphisms

fP : FP → GP .

It then also restricts to OX (U)-module homomorphisms

f (U) : F(U)→ G(U).

We say f is an isomorphism if all fP are isomorphisms. Then all
f (U) are also isomorphisms.

36 / 44
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Direct Sum of Sheaves∗

Let F and G be sheaves of OC -modules inside the F -vector
spaces M and N respectively.

We define F ⊕ G as the sheaf of OC -modules inside M ⊕ N
defined by

(F ⊕ G)P = FP ⊕ GP
for all P ∈ C . Then also

(F ⊕ G)(U) = F(U)⊕ G(U)

for all U ⊆ C .

If F and G are locally torsion-free then F ⊕ G is locally
torsion-free. If in addition F and G are locally finitely
generated then F ⊕ G is locally finitely generated.

37 / 44
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Grothendiecks Theorem∗

Let C be complete and φ : C → P1 a morphism of degree n.
Let F be a locally torsion-free and finitely generated sheaf of
OC -modules.

Grothendieck’s Theorem:

φ∗(F) ∼= OP1(d1∞)⊕ · · · ⊕ OP1(dn∞)

with d1 ≥ · · · ≥ dn uniquely determined.

We have indeed computed F(C ) via

F(C ) = φ∗(F)(P1)

∼= OP1(d1∞)(P1)⊕ · · · ⊕ OP1(dn∞)(P1) !

38 / 44

The direct sum decomposition is given by the reduced basis f1, . . . , fn, and

OP1(di∞)(P1) ∼= {λ ∈ K[x] | deg(λ) ≤ di}.

As we can see, the diagonalisation proposition is in fact the key observation in
Grothendiecks theorem.

For a reference see A. Grothendieck, “Sur la classification des fibrés holomorphes sur
la sphère de Riemann”, Amer. J. Math., 79 (1957) pp. 121-138.
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Relation to Riemann-Roch

OC (C ) is the algebraic closure of K in C . Suppose
K = OC (C ) and let g denote the genus of C .

Let F = OC (D). The numbers di satisfy

I d1 ≥ · · · ≥ dn.

I
∑n

i=1 di = deg(D) + 1− g − n

I L(D) 6= 0 iff d1 ≥ 0.

I deg(D) ≥ d1 & (deg(D)− g)/n,

I D non-special implies dn ≥ 0.

I dn & (deg(D)− 2g)/n.

I d1 − dn . 2g/n.

I OC (C ) = L(0).

The d1, . . . , dn are thus balanced.
If D = 0 then g can be computed from d1, . . . , dn.

39 / 44

Proof. From dim(D) ≤ deg(D) + 1 we obtain d1 ≤ deg(D).
Choose s such that deg(E) < 0 for E = D − sdiv(x)∞. The invariants of E are

ei = di − s. Then ei < 0 for all i. Choose r minimal such that dim(E + rdiv(x)∞) > 0.
Then deg(E)+rn < g+n and e1+r ≥ 0. Thus deg(D)−sn+rn < g+n and d1−s+r ≥ 0.
Then d1 ≥ s − r and deg(D) − (s − r)n < g + n. So s − r > (deg(D) − g − n)/n and
d1 > (deg(D)− g − n)/n.

Similarly for dn with g replaced by 2g − 1, so dn & (deg(D)− 2g)/n.
Combination of the previous two statements yields d1 − dn . 2g/n.
For the last statement see my RR paper.
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Application: Special Models

When applied to I = OC the theorem yields

I a specific representation of C and

I also gives an embedding of C in a weighted n-dimensional
projective space, depending on φ.

I The weights are given by the −di .

Example. C : y 2 = zx7 − z8 over Q where w(x) = w(z) = 1
and w(y) = 4, is regular.

The affine ring R0 of C is generated by x and n additional
variables. Relations are at most quadratic in these variables
and of degree O(g/n) in x .

40 / 44
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Gonality

In practice rather sensitive to n.

Thus

I minimize n, find φ of lowest degree. But in
general n = Θ(g).

I substitute variables by powers of others, if possible.

Recent activity:

J. Schicho and D. Sevilla: Effective radical parametrization of
trigonal curves, 2011.

M. C. Harrison: Explicit solution by radicals, gonal maps and
plane models of algebraic curves of genus 5 or 6, 2013.
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Magma and other Implementations

Probably not exhaustive ...

Global sections:

I via Grothendiecks theorem: Magma

I via saturation of homogenous ideals: Magma,
MacCaulay2, Singular.

Maps of minimal degree:

I via Schicho and Sevilla: Magma

I via Harrison: Magma

42 / 44

55



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Excercises

1. Compute a complete regular curve C in the sense of these slides
with function field Q(x , y), where y 7 − y 2 = x2, and show by the
approach presented here that the genus of C is 2.

2. Suppose C is a regular curve and let U ⊆ C be finite. Show that
OC (U) is a principal ideal domain.

3. Suppose C is a regular curve and let U ⊆ C be affine. Show that
every fractional ideal of OC (U) can be generated by two elements of
K (C ).

4. Find a complete curve C over K where OC (C ) 6= K . Verify the
latter using Magma.

5. Find a curve C over some K such that there is no separable
morphism C → P1.

6. Provide examples that in the relation of domination the cases
O×

P ( O×
Q and mP = mQ as well as O×

P = O×
Q and mP ( mQ can

indeed occur.
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Excercises∗

For the following excercises let C be a complete curve over K .

7. Show that there is a morphism C → P1 and a non-zero
K (P1)-linear map K (C )→ K (P1).

8. Show that for every sheaf F of locally torsion-free and finitely
generated OC -modules there is a sheaf F# of locally torsion-free and
finitely generated OC -modules such that if φ∗(F) ∼= ⊕iOP1 (di ) then

φ∗(F#) ∼= ⊕iOP1 (−di ).

9. In the situation of excerise 8 show there is a sheaf F∗ of locally
torsion-free and finitely generated OC -modules such that
φ∗(F∗) ∼= ⊕iOP1 (−di − 2).

10. Adapt matters if necessary and define a degree deg(F) of locally
torsion-free and finitely generated OC -modules such that

dimK (F(C ))− dimK (F∗(C )) = deg(F) + c ,

where c depends only on C and dimK(C) F(∅).

44 / 44

Hint for 10.: Express those quantities for F in terms of the di and compare.
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Notation

Consider complete regular curves C over a field K . We can
then equivalently work with F = K (C ) only.

Notation:

I Group of divisors Div(F/K ).

I Subset of divisors of degree d : Divd(F/K ).

I Subgroup of principal divisors of Princ(F/K ).

I Class group or Picard group: Pic(F/K ).

I Subgroup of class of degree d : Picd(F/K ).

By definition,

Pic(F/K ) = Div(F/K )/Princ(F/K ),

Pic0(F/K ) = Div0(F/K )/Princ(F/K ).

3 / 40

Since K is assumed to be the exact constant field of F , C is geometrically irreducible.
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Some Facts

We have
Pic(F/K ) = Pic0(F/K )⊕ 〈A〉,

where A is a divisor of F/K with minimal positive degree.

If K is a finite field are algebraically closed then deg(A) = 1. In
the latter case A can be chosen to be a prime divisor.

If K is finitely generated over its prime field then Pic0(F/K ) is
finitely generated.

If K is a finite field then Pic0(F/K ) is finite. Then usually

#Pic0(F/K ) ≈ (#K )g .
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The “finitely generated” statement is the theorem of Lang-Néron. The “finite” statement
is classic, see for example the book of Stichtenoth.
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Computing in the Class Group

Representation of divisors:
I Divisors can be represented as a sum of places with

integral coefficients, or as a pair of fractional ideals.
I Addition of divisors either by addition of coefficient vectors

or multiplication of ideals.
I Equality by coefficientwise comparison or comparison of

Hermite normal forms.

Representation of divisor classes:
I By divisors, which can be “suitably” chosen, for example

reduced divisors.
I Comparison via unique divisor class representatives, if they

can be computed, or by the test

deg(D) = deg(E ) and L(D − E ) 6= 0.

I This is usally efficient (polynomial time) in terms of
operations in K .
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An efficient algorithm (in theory) is an algorithm that has an (expected) runtime that
depends polynomially on the length of the input. If the runtime is measured in operations
in K then the length of the input is measured in elements of K.

An efficient algorithm in practice is one that works well in implementations. Those
both notions need not really coincide.

If K is an infinite field, and worsely not algebraic over a finite field, then the required
operations in K often or usually involve elements with large bit length and become
prohibitive very quickly, see “coefficient explosion”.
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Computing in the Class Group

Reduction of divisors:

I Fix a divisor A of positive degree.

I For every D there is D̃ ≥ 0 and f ∈ F× such that

D = D̃ − rA + div(f )

and deg(D̃) ≤ g + deg(A)− 1.

I If A is a prime divisor of degree one and r is minimal
then D̃ is uniquely determined.

Class representatives:

I Thus [D] = [D̃ − rA] for every divisor class.

I If A is a prime divisor of degree one then D̃ − rA can be
uniquely chosen.

6 / 40

The D̃ is constructed as follows: Choose r ∈ Z minimal such that L(D+rA) 6= 0. Then
for any f ∈ L(D+ rA) we have D+ rA+ div(f) ≥ 0. So we define D̃ = D+ rA+ div(f).
Replacing f by a non-zero scalar multiple does not change D̃. This shows that D̃ is
uniquely determined if dimK(L(D+ rA)) = 1. Otherwise, D̃ is not uniquely determined.

By the Riemann-Roch theorem, deg(D + rA) ≤ g + deg(A)− 1, hence D̃ = deg(D +
rA) + div(f)) = deg(D + rA) ≤ g + deg(A)− 1.

If A is a prime divisor of degree one then we can always achieve dimK(L(D+rA)) = 1
by the theorem of Riemann-Roch, so D̃ is uniquely determined.
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Computing in the Class Group

Reduction of divisors:

I The reduced divisor D̃ can be computed by an iterative
double-and-add method such that the runtime is
polynomial in g , deg(A) and the length of D.

I Moreover, f is computed as a product of powers of
elements of F and has length polynomial in g , deg(A) and
the length of D.
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An analogous case is computing
∏

i a
λi
i in Z/nZ. Using the double-and-square strategy

combined with intermediate reductions modulo n allows us to compute the product very
efficienty, even for large λi.

For a reference see my RR paper.
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Computing in the Class Group

These ideas can be optimised, for example by precomputations,
and worked out in great detail.

A (biased) selection of results:

I Cantor: If F/K is hyperelliptic then operations in
Pic0(F/K ) can be reduced to fast polynomial arithmetic
in degree O(g), so the runtime is O∼(g).

I Makdisi: If F/K is arbitrary then operations in Pic0(F/K )
can be reduced to fast matrix arithmetic in dimension
O(g), so the runtime is O∼(gω).

I Hess-Junge: If F/K has a rational subfield of index n,
where n = O(g) is always possible, then operations in
Pic0(F/K ) can be reduced to fast polynomial matrix
arithmetic in dimension O(n) and degree O(g/n), so the
runtime is O∼(nω(g/n)).
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Computing the Class Group

We assume that K is finite! Write q = #K .

Have Pic0(F/K ) ∼= Z/c1Z× · · · × Z/c2gZ. with ci |ci+1.

Goal:

I Compute the ci .

I Compute images and preimages under a fixed isomorphism

φ : Pic(F/K )→ Z⊕ Z/c1Z× · · · × Z/c2gZ.

Denote by A a fixed divisor of degree one that maps under φ to
the first cyclic factor of the codomain of φ.

9 / 40
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Computing the Class Group

Algorithms that work for any finite abelian group G :

I Classic runtime O((#G )1/2).

I Improvements often lead to O((#G )1/3).

I So here roughly O∼(qg/2) or O∼(qg/3).

Algorithms that use G = Pic0(F/K ) usually employ an index
calculus strategy:

I If q is small and g is large, the (heuristic) runtime is

q(c+o(1))g1/2 log(g)1/2 , and q(d+o(1))g1/3 log(g)2/3 (†) in
special families.

I If q is large and g ≥ 2 fixed, then O∼(q2−2/g ) (†).

(†): This is for discrete logarithms, so restrictions may apply.
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Some references for the generic algorithms are Shanks Baby-Step-Giant-Step, Pollard
methods and the thesis of Sutherland.

Some references for the index calculus methods are Adleman-Huang, Diem, Enge et.
al., Hess, Jacobson, Stein.

(†) : The cases with q(1+o(1))g
1/3

and O∼(q2−2/g) are actually for discrete logarithm
computations. I think, but am not fully sure, that the runtime also applies to class group
computations.

Thus in cryptography one usually takes q large and g = 1.
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Index Calculus

Setup:

I Let S denote the set of places of F/K of degree ≤ r ,
called factor basis.

I Let [D1], . . . , [Ds ] denote generators of Pic0/F/K ).

Relation search:

I Choose random λi and compute [D̃ − lA] =
∑

i λi [Di ]
with D̃ reduced.

I Factor D̃ over S , if possible and obtain

∑

i

λi [Di ] = [D̃ − lA] = −l [A] +
∑

P∈S
nP [P].

I Store λi and nP as rows of a matrix and repeat.
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Index Calculus

Linear algebra:

I If matrix has full rank and sufficiently more rows than
columns use a Hermite normal form computation to derive
relations between the generators [Di ].

I Use a Smith normal form computation to derive
c1, . . . , c2g from those relations.

Why does it work?

I There is a good upper bound d on the degrees of the
places in the Di .

I The class number can be efficiently approximated and
checked against the computed c1, . . . , c2g .

I There is a reasonable choice of r and a good (heuristic)
probability that enough relations are obtained.

12 / 40
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Index Calculus

Let Nm denote the number of places of degree one in the
constant field extension of F of degree m.

Theorem. Suppose Nd > (g − 1)2qd/2. Then Pic(F/K ) is
generated by A and the divisors D = P − deg(P)A, where P
ranges through the places of degree less than or equal to d .

Theorem. Let h = #Pic0(F/K ). Then

∣∣∣∣ log

(
h

qg

)
−

t∑

m=1

q−m

m

(
Nm − qm − 1

) ∣∣∣∣ ≤
2g

q1/2 − 1
· q
−t/2

t + 1
.

Since c1 . . . c2g is an integral multiple of h an approximation of
log(h/qg ) up to an error of log(2)/3 is sufficient.

The total number of places to be considered is O(g2).
13 / 40

The statements about the probability of obtaining enough relations is rather messy,
so we omit those.
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Some Applications

From the relations of the [Di ] it is easy to compute generators
of Pic0(F/K ) corresponding to the cyclic generators of the
codomain of φ. We can thus also compute preimages under φ
efficiently.

Images φ([D]) are computed by adding [D − deg(D)A] to the
[Di ] and searching for relations. The runtime is then basically
the same like that for computing the c1, . . . , c2g .

This can directly be used to compute for an arbitrary S

I S-units U(S) = {f ∈ F× | supp(div(f )) ⊆ S} and

I S-class groups Div(F/K )/(〈S〉+ Princ(F/K )).

14 / 40

The computation of S-units and S-class groups requires the evaluation of the map φ
at the places in S, easy manipulations of finitely generated abelian groups and L(D)
computations for D a principal divisor.

Note U(S) ∼= Z#S−1, so U(S) is computed by giving a basis in F×. The basis elements
can be efficiently represented as product of powers of small elements, by the divisor
reduction: Observe that if D is a principal divisor, then D̃ = 0 and r = 0.

Note that OS = ∩P 6∈SOP is a Dedekind domain with unit group O×S = U(S) and ideal
class group Pic(OS) ∼= Div(F/K)/(〈S〉+ Princ(F/K)).
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Class Fields

Second Part

15 / 40

72



Algorithmics of
Function Fields

2 Number
Theory

Class Groups

Mathematical
Background

Computing in
the Class Group

Computing the
Class Group

Applications

Class Fields

Mathematical
Background

Computing Ray
Class Groups

Computing Class
Fields

Applications

Zeta functions
and L-series

Mathematical
Background

Computing
L-series

Applications

Exercises

Notation

Notation:

I Let m denote an effective divisor, called modulus.

I Divm(F/K ) group of divisors coprime to m.

I F×m = {f ∈ F× | vP(f − 1) ≥ vP(m) for all P} group of
elements congruent to one modulo m.

I Princm(F/K ) = {div(f ) | f ∈ F×m }, the ray modulo m.

I Picm(F/K ) = Divm(F/K ) /Princm(F/K ), the ray class
group modulo m.

I φm,n : Picm(F/K )→ Picn(F/K ), [D]m 7→ [D]n for m ≥ n.

We have Princgcd(m,n)(F/K ) = Princm(F/K ) + Princn(F/K ).

The φm,n are epimorphisms.

16 / 40

Here gcd(m, n) =
∑

P min(vP (m), vP (n))P . The approximation theorem shows the
statements on Princgcd(m,n)(F/K) and φm,n.

References for this section are

• Rosen : “Number theory for function field”,

• Artin-Tate: “Class field theory”,

• Cassels-Fröhlich : “Algebraic Number Theory”,

• Serre : “Algebraic Groups and Class Fields”,

• Hess-Massierer : “Tame class field theory for global function fields”.
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Artin Map

Let E/F be a finite abelian extension. Let P be place of F/K
and write N(P) = #OP/mP = qdeg(P).

If P is unramified in E/F then there is a uniquely determined
σP ∈ Gal(E/F ) satisfying

σP(x) ≡ xN(P) mod mQ

for all places Q of E/K above P and all x ∈ OQ .

Suppose E/F is unramified outside supp(m). The Artin map is
defined as

AE/F : Divm(F/K )→ Gal(E/F ), D 7→
∏

P

σ
vP(D)
P .

17 / 40
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Some Properties of the Artin Map

Theorem.

I The Artin map is surjective.

I If the multiplicities of m are large enough then

Princm(F/K ) ⊆ ker(AE/F ).

Any m like in the theorem is called a modulus of E/F . There is
a smallest modulus f(E/F ) of E/F , called conductor of E/F .
Every place in m is ramified in E/F .

If m is a modulus of E/F then regard

AE/F : Picm(F/K )→ Gal(E/F ).

Thus if H = ker(AE/F ) then H has finite index in Picm(F/K )
and

Gal(E/F ) ∼= Picm(F/K )/H.
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Norm Map and Class Fields

Define
NE/F : PicConE/F (m)(E/K )→ Picm(F/K )

by taking the norm of a representing divisor. Norms of elements
of E×ConE/F (m) are elements of F×m , so this is well defined.

Theorem. If E/F is finite abelian with modulus m then

ker(AE/F ) = im(NE/F ).

We say that E is a class field over F with modulus m that
belongs to the subgroup H = im(NE/F ) = ker(AE/F ) of finite
index of Picm(F/K ).
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Existence of Class Fields

Theorem.

1. If H is any subgroup of Picm(F/K ) of finite index, then
there is a class field E over F with modulus m that belongs
to H, and E is uniquely determined up to F -isomorphism.

2. The degree of the exact constant field of E/K over K is
equal to deg(H), the minimal positive degree of divisor
classes in H.
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The Artin map commutes with the epimorphisms φm,n. It is therefore also possible
to combine the groups Picm(F/K) into the group limm Picm(F/K) and let the Artin map
take values in the Galois group of a fixed maximal abelian extension of F . One then
obtains a bijection between subgroups of finite index that contain a ray and finite abelian
extensions inside the fixed maximal abelian extension. Also see “idele class groups”.
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Computing Ray Class Groups

There is an exact sequence of finitely generated abelian groups

0→ K× →
∏

P

(OP/m
vP(m)
P )× → Picm(F/K )→ Pic(F/K )→ 0.

We have:

I Generators and relations can be computed for each object
of the sequence other Picm(F/K ).

I Elements of each object can be represented in chosen
generators.

I Images and preimages of the maps of the sequence can
also be computed.

Then generators and relations of Picm(F/K ) can be computed
and elements of Picm(F/K ) can be represented in those
generators.
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The complexity is dominated by the operations in Pic(F/K) and the residue class

rings
∏

P (OP/mvP (m)
P )×. The latter is dominated by discrete logarithm computations in

the residue class fields of the P , which are the finite extensions of Fq of degree deg(P ).

Some references are

• master thesis of Pauli,

• paper by Pauli, Pohst, Hess,

• phd thesis of Roland Auer on the construction of function fields with many rational
points,

• second book of Henri Cohen.
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Computing Class Fields

Given H ≤ Picm(F/K ) the goal is to compute defining equa-
tions for the class field E over F of modulus m that belongs
to H.

Theorem. Suppose H1,H2 ⊆ Picm(F/K ) with H1 ∩ H2 = H.
If E1 belongs to H1 and E2 belongs to H2 then E = E1E2

belongs to H.

We can choose H1 and H2 such that the index of H1 is coprime
to char(F ) and the index of H2 is a power of char(F ).
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Some references are

• paper by Fieker on the computation of class fields (for number fields though).

• paper of Hess-Massierer is also helpful.

• second book of Henri Cohen (for number fields though).
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Coprime to Characteristic Case

Theorem. Let F ′/F finite and E ′ = EF ′. Then E ′ is the class
field over F ′ with modulus m′ = ConF ′/F (m) that belongs

to H ′ = N−1F ′/F (H).

Suppose that the index of H is coprime to char(F ) and let n
denote the exponent of Picm(F/K )/H.

Let F ′ = F (µn).

Theorem. Every abelian extension of F ′ of exponent n is a
Kummer extension, is thus obtained by adjoining n-th roots of
suitable Kummer elements of F ′ to F ′.

This leads to a rather explicit representation of E ′.
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Coprime to Characteristic Case

Then it is known and can be done:

I Kummer elements fi can be computed for the class field G
over F ′ of modulus m′ that belongs to nPicm(F ′/K ), for
example by an S-units computation in F ′.

I H ′ is computed as a preimage of maps of abelian groups.

I E ′ is the fixed field of G under AG/F ′(H ′), the Kummer
elements gj of E ′ are accordingly computed as products of
the fi using a generalised Tate-Lichtenbaum pairing.

I E ′/F is finite abelian with modulus m, and E is the fixed
field of E under AE ′F (H). Defining equations for E can be
computed via explicit Galois theory.
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The theorem is not difficult to prove using the following property of the Artin map
on divisors: If resE′/E : Gal(E ′/F ′)→ Gal(E/F ) denotes the restriction monomorphism
then

AE/F ◦NF ′/F = resE′/E ◦AE′/F ′ .

For more details see papers by Fieker and Hess-Massierer.
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Power of Characteristic Case

Theorem. Every abelian extension of F ′ of exponent n, an
m-th power of char(F ), is an Artin-Schreier-Witt extension, is
thus obtained by adjoining the division points of A-S-W
elements in Wm(F ′) under the A-S-W operator to F ′.

This leads to a rather explicit but also rather involved
representation of E . Let n be the exponent of Picm(F/K )/H.

Then it is known and can be done:

I A-S-W elements fi can be computed for the class field G
over F of modulus m that belongs to nPicm(F/K ), for
example by a Riemann-Roch computation in F .

I E is the fixed field of G under AG/F (H), the A-S-W
elements gj of E are accordingly computed as sums of the
fi using a pairing.
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Construction of function fields with many rational places:
I A place P of F is fully split in E if and only if P ∈ H.
I Let hn,H = #Picn(F/K )/φm,n(H). The genus of E

satisfies

deg(H)(gE − 1) = hm,H

(
gF − 1 +

deg(m)

2

)

− 1

2

∑

P|m




vP(m)∑

k=1

hm−kP,H


 deg(P).

Construction of Drinfeld modules:
I Is defined by coefficients which are elements of a specific

class field.
I The coefficients satisfy various relations.
I Use those relations to solve for the coefficients over the

class field.
26 / 40

Algorithms for the computations of this section have been implemented by Fieker in
Magma.
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Motivation

Study zero sets of polynomial equations over various fields
I Example: {(x , y) ∈ K 2 | x2 + y2 = 1}
I Over finite fields: Count solutions!

Algebraic curves: Polynomial equations have one free variable,
the other variables are algebraically dependent.

We will again consider function fields F/Fq over the exact
constant field Fq instead of curves. Write Nd for the places of
degree one of F/Fqd .

The zeta function of F/K is

ζF/K (t) = exp

( ∞∑

d=1

Nd ·
td

d

)

=
∏

P

1

1− tdeg(P)
=
∑

D≥0
tdeg(D).
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Frobenius Operation

There is LF/K (t) ∈ Z[t] with deg(LF/K (t)) = 2g and

ζF/K (t) =
LF/K (t)

(1− t)(1− qt)
.

This is called the L-polynomial of F/K .

Moreover, there are Q`-vector spaces V` and Frobq,` ∈ Aut(V`)
such that

LF/K (t) = det (id− Frobq,` ·t |V`) .
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Computation of Zeta functions

Possible applications:

I “Cryptography”

I Distribution of the eigenvalues of Frobenius

I ...

Complexity of `-adic methods:

I Exponential in g and polynomial in log(q),

I impractical for g ≥ 3.

Complexity of p-adic methods:

I Mostly O∼(p1g4n3) or O∼(p1g5n3) with n = logp(q).
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Galois and Abelian Extensions

Let E/F denote a finite Galois extension with Galois group G
such that K is the exact constant field of E .

The associated product formula for ζE/K (t) is

ζE/K (t) =
∏

χ

L(E/F , χ, t)χ(1),

where χ runs over the irreducible characters of G and
L(E/F , χ, t) will be defined later (for G abelian).

Can the product be computed more efficiently for large gE?

If E/F is abelian then E is a class field over F belonging to
some H and the factors of the product can be described in
terms of H!
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Ray Class Groups

We have already met ray class groups. Here are some (more)
properties.

For a subgroup H of Picm(F/K ) of finite index there is a
unique minimal f(H) ≤ m with

Picf(H)(F/K )/φm,f(H)(H) ∼= Picm(F/K )/H.

The divisor f(H) is the conductor of H. It is equal to the
conductor of the class field E over F belonging to H.

Picm(F/K ) ∼= Pic0m(F/K )⊕ Z.

#Pic0m(F/K ) =
#Pic0(F/K )·∏s

i=1(qdeg(P) − 1)qdeg(P)(vP(m)−1)

q − 1
.
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The formula for Pic0m(F/K) follows from the exact sequence on slide 21.
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Characters and L-series

A character χ modulo m is a homomorphism

χ : Picm(F/K )→ C×

of finite order. The conductor f(χ) of χ is f(ker(χ)).

The character sum Nd(χ) of degree d is

Nd(χ) =
∑

deg(P)|d ,P 6≤f(χ)
deg(P) · χ([P])d/ deg(P).

The L-series L(χ, t) = L(E/F , χ, t) of χ with ker(χ) ⊇ H is

L(χ, t) = exp

( ∞∑

d=1

Nd(χ) · td/d
)
.

We have ζF/K (t) = L(χ, t) for χ = id.
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L-series

Theorem. Assume ker(χ) 6= Picm(F/K ). Then

L(χ, t) =

2g−2+deg(f(χ))∏

i=1

(1− ωi (χ)t)

with |ωi (χ)| = q1/2 and ζ primitive ord(χ)-th root of unity, and

L(χ, t) = ε(χ) · qg−1+deg(f(χ))/2 · t2g−2+deg(f(χ)) · L(χ̄,
1

qt
)

with ε(χ) ∈ q− deg(f(χ))/2Z[ζ] and |ε(χ)| = 1. Furthermore,

ζE/K (t) =
LE/K (t)

(1− t)(1− qt)

=
LE/K (t) ·∏Picm(F/K))ker(χ)⊇H L(χ, t)

(1− t)(1− qt)
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For a reference see the book of Moreno.
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Computing one L-series

Let L(χ, t) =
∑2g−2+deg f(χ)

i=0 ai t
i with ai ∈ Z[ζ] and a0 = 1.

1. The coefficients a1, . . . , am can be computed from
N1(χ), . . . ,Nm(χ) by the definition of L(χ, t):

L(χ, t) =
m∑

i=0

ai t
i ≡ exp

(
m∑

d=1

Nd(χ) · td/d
)

mod tm+1.

2. The character sums N1(χ), . . . ,Nm(χ) can be computed
from their definition

Nd(χ) =
∑

deg(P)|d ,P 6≤f(χ)
deg(P) · χ([P])d/ deg(P)

by enumerating all places P up to degree m with P 6≤ f(χ).
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Computing one L-series

3. Compute characters χ modulo m with ker(χ) ⊇ H:
I Use representations of Picm(F/K ), H and Picm(F/K )/H

in terms of generators and relations.
I Define χ on generators of Picm(F/K )/H and pull back to

Picm(F/K ).
I Compute ker(χ) ⊇ H and f(χ) = f(ker(χ)).
I Write P in the generators of Picf(χ)(F/K ) to

obtain χ([P]).

4. Due to the functional equation there is some redundancy
between the coefficients of L(χ, t). As a consequence it often
suffices to take m about half the degree of L(χ, t).

Best to have a toolbox for finitely generated abelian groups and
homomorphisms. Requires algorithms for structure computa-
tion of Picm(F/K ) and discrete logarithms in Picm(F/K ).
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The required operations for Picm(F/K) can be reduced to operations in Pic(F/K) and∏
P∈supp(m)(OP/m

vP (m)
P )×, see slide 21.
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Computing the Zeta function

Need to choose one ζ for all χ on Picm(C ) with ker(χ) ⊇ H.

Compute LE/K (t) as product over all L-series

LE/K (t) = LF/K (t) ·
∏

Picm(F/K))ker(χ)⊇H
L(χ, t).

Use some optimisations:

I Let σ ∈ Gal(Q(ζ)/Q). Then L(σ ◦ χ, t) = L(χ, t)σ. Use
Galois redundancy: Compute system of representatives R
for Gal(Q(ζ)/Q)-orbits of (Picm(F/K )/H)∗. For each
χ ∈ R compute L(χ, t) and derive L(σ ◦ χ, t) = L(χ, t)σ.

I Choose some epimorphism ψ : Z[ζ]→ Z/nZ with n large.
Compute product over Z/nZ and reconstruct coefficients
of LE/K (t) from Z/nZ to Z by choosing the representative
of smallest absolute value.
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Complexity

In the following only very rough estimations.

Input size: F/K ,m,H polynomial in log(q), g , deg(m).
Output size: g2

E log(q).

Computing one L-series: q2(g+deg(f(χ))).

Computing Zeta function:

I L-series product: g2
E log(q).

I Galois redundancy gives big practical, but no asymptotic
speed up.

Depending on H have very roughly deg(m) / gE / qg+deg(m).

So for small H asymptotically optimal!
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I have a Magma package for the computations of this section, but it is not yet available
in Magma by itself.
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Galois module structure of Pic0(E/K ):

I Use L-series to compute Stickelberger element in the
group ring Z[G ]

I Derive information about the structure of Pic0(E/K ) via
Stickelberger ideal and Kolyvagin derivative classes.

I Derive relations of conjugate elements in Pic0(E/K ) under
certain conditions.

This is interesting since no equations for E/K and no expensive
class group computation of Pic0(E/K ) needs to be carried out.
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This application is detailed in a paper by Huang-Narayanan.
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Excercises

1. Show that there is an injective map of sets of Pic0(F/K ) into the
set of effective divisors of degree n, for any n ≥ n.

2. Show that Pic0(K (x)/K ) = 0.

3. Show that Picm(F/K ) ∼= Pic(F/K ) if and only if m is a prime
divisor of degree one.

4. Let φ : E1 → E2 be a morphism of elliptic curves. Show that
K (E1) is a class field of φ∗(K (E2)) belonging to

H = 〈∞〉 × {(φ(P))− (∞) |P ∈ E1(K )}.

5. If χ 6= 1 is a character for Fq(x)/Fq then deg(f(χ)) ≥ 2.

6. Let F = F7(x , y) with y2 = x5 + 2x + 1. Compute the genus and
number of rational places of the class field of F/K with modulus
m = 2∞+ 3(x , y − 1) and subgroup H generated by [(x , y + 1)]m.

40 / 40
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Weierstrass Places

Assume K perfect and let P be a place of degree one of F/K .

The Weierstrass semigroup for P is the additive semisubgroup
of Z≥0 defined by

W (P) = {−vP(f ) | f ∈ F× with vQ(f ) ≥ 0 for all Q 6= P}

Theorem. There is a semisubgroup W of Z≥0 such that

W = W (P)

for almost all P. Moreover, #(Z≥0\W (P)) = g in general
and Z≥0\W (P) = {1, . . . , g} if char(F ) = 0.

If W (P) 6= W then P is called Weierstrass place of F/K .

Theorem. There exist Weierstrass places if and only if g ≥ 2.
Their number is between 2g + 2 and (g − 1)g(g + 1) for
char(F ) = 0 and in O(g3) in general.
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Sketch

Let W denote a canonical divisor. The first observation is

L(nP) 6= L((n − 1)P) iff L(W − nP) = L(W − (n − 1)P).

Thus can/need to study zero and poles of function in L(W ) for
all P. This can be done using the following tools and objects:

I Higher Derivatives of algebraic functions,

I Wronskian Determinant associated to L(W ),

I Invariant divisor.

The Weierstrass places are then the places in the support of
this invariant divisor.

4 / 24

101



Algorithmics of
Function Fields

3 Geometry

Weierstrass
Places

Mathematical
Background

Computation of
Weierstrass
Placs

Isomorphisms
and Automor-
phisms

Mathematical
Background

Computation of
Isomorphisms

Applications

Sketch - Essential Idea

Roughly speaking, if f ∈ F has a zero of order n 6= 0 at a place
P of degree one, then its i-th derivative D(i)(f ) with i ≤ n has
a zero of order n − i at P.

Let f1, . . . , fg be a basis of L(W ) and suppose P 6∈ supp(W ).

The existence or non-existence of functions in L(W ) with
prescribed zero orders εi at a P can be cast as the linear
independece of the vectors

(D(εi )(f1)(P), . . . ,D(εi )(fg )(P)).

Places P where linear independence does not hold are precisely
the zeros of the Wronskian determinant

det
((

D(εi )(fj)
)
i ,j

)
.
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Higher Derivatives - Example∗

We begin by way of example.

Suppose f ∈ C[x ]. Then also f ∈ C [t][x ] and we can write

f =

deg(f )∑

i=0

λi (t)(x − t)i

with λi ∈ C [t]. The i-th derivative f (i) of f then satisfies

f (i)(t) = i ! · λi (t).

We wish to generalise this to arbitrary function fields and
characteristic.

Note that if p = char(F ) > 0 then uninterestingly f (p)(t) = 0,
so we will take the λi as higher derivatives of f .
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Local Expansions∗

Let P be a place of degree one and π a local uniformizer of P,
so vp(π) = 1.

For every f ∈ F and n ∈ Z there are uniquely determined
m ∈ Z and λi ∈ K such that

vP

(
f −

n∑

i=m

λiπ
i

)
≥ n + 1.

This leads to a K -algebra monomorphism

F → K ((t))

into the ring of Laurent series over K which maps π to t.
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Generic Place∗

Let x be a separating element of F/K and y ∈ F such that
F = K (x , y).

Denote F ′ = K (x ′, y ′) an isomorphic copy of F and let FF ′/F ′

be the constant field extension.

There is place P of degree one of FF ′/F ′ which is the unique
common zero of x − x ′ and y − y ′. Moreover, x − x ′ is a local
uniformizer of P.

This place P is called generic place of F/K .

The generic place is independently of the choice of x and y
generated by the set of f − f ′ for f ∈ F .
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Higher Derivatives∗

For every f ∈ F it holds that vP(f ) ≥ 0. Via local expansions
we obtain the monomorphism

φ : F → F ′[[t]],

and we define the D
(i)
x (f ) by

φ(f ) =
∞∑

i=0

D
(i)
x (f )(x − x ′)i .

Then D
(i)
x (f ) is called i-th derivative of f with respect to x .
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Higher Derivatives and
Local Expansions at Places∗

A local uniformizer π is also a separating element of F/K .

If vP(f ) ≥ 0 then D
(i)
π (f )(P) is the i-th coefficient of the

power series expansion of f at P in π.

The element π − π′ ∈ FF ′ is also a local uniformizer of the
generic place of F/K . Thus the D

(i)
π (f ) can be expressed in

terms of the D
(i)
x (f ) and vice versa.

This is used to define the invariant divisor (under change of x)
mentioned above.
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Isomorphisms and Automorphisms

Second Part
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Isomorphisms

Let F(1)/K and F(2)/K be two function fields over K .

A homomorphism φ from F(1)/K to F(2)/K is a K -algebra
homomorphism F(1) → F(2), which is necessarily injective.

If φ is surjective it is called an isomorphism.

A homomorphism φ is defined by its images in F(2) on
generators of F(1) over K .

Theorem. Suppose F(2)/φ(F(1)) is separable and g(1) ≥ 2.
Then φ is an isomorphism if and only if g(1) = g(2).

12 / 24

Proof of Theorem of Slide. If F(1) is isomorphic to a proper sub-function field of F(2) and
g(1) ≥ 2, then g(2) > g(1) by the genus formula of Riemann-Hurwitz.
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Automorphisms

An isomorphism φ of F/K with itself is called an automorphism
of F/K . They form a group which is denoted by Aut(F/K ).

Theorem. The automorphism group Aut(F/K ) is finite. If in
particular char(F ) = 0 then

#Aut(F/K ) ≤ 84(g − 1).

In general, #Aut(F/K ) is roughly bounded by 16g4.

13 / 24

The bound for characteristic zero was given by Hurwitz. The bound for positive character-
istic was given by Stichtenoth, see “Über die Automorphismengruppe eines algebraischen
Funktionenkörpers von Primzahlcharakteristik”. Arch. Math., 24:527544, 1973.
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Computation of Isomorphisms

We assume that g(1) = g(2) ≥ 2 and K is the exact constant
field of F(1)/K and F(2)/K , for otherwise they are not
isomorphic. All this can be checked beforehand.

There are different (better) techniques for g = 0 or g = 1 and
for hyperelliptic function fields.

We compute isomorphisms of complete regular curves C with a
distinguished point by computing defining equations for C that
are almost uniquely determined.

We assume that K is perfect.

14 / 24
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Sketch of Steps of Computation

1. Compute suitable place P(1) of degree one of F(1)/K and
a corresponding (small) set of places S of F(2)/K such
that any isomorphism would map P(1) inside S .

2. Compute almost unique generators and defining equations
for F(1)/K at P(1) and for F(2)/K at P(2) for all P(2) ∈ S .

3. Coefficientwise comparison leads (under some assumptions
that always hold if char(F ) is zero or big) to a system of
equations in two variables which is easily solved.

4. This yields all isomorphisms φ : F(1) → F(2) with
φ(P(1)) = P(2), defined by their images of the computed
generators.

The set S can consist of Weierstrass places or places of lowest
degree.
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Complexity Considerations

Number of Weierstrass places:

I Between 2g + 2 and (g − 1)g(g + 1) in characteristic zero.

I In general bounded by O(g3).

I Thus using Weierstrass places P(1) and P(2) can lead to
O(g) up to O(g3) comparisons.

Number of places of degree one for K = Fq:

I Is q + 1 + t with |t| ≤ 2gq1/2.

I Thus roughly up to O(max{q, gq1/2}) comparisons.

Bound for the number of isomorphisms:

I 84(g − 1) in char(k) = 0 and roughly O(g4) for
char(k) > 0.
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Applications

Testing for isomorphism and the computation of automorphism
groups are basic algorithmic problems.

Some applications:

I Tables of function fields and curves.

I Representations of automorphism groups on
Riemann-Roch spaces and spaces of differentials.

I Monopole computations in physics.

I ...

17 / 24

114



Algorithmics of
Function Fields

3 Geometry

Weierstrass
Places

Mathematical
Background

Computation of
Weierstrass
Placs

Isomorphisms
and Automor-
phisms

Mathematical
Background

Computation of
Isomorphisms

Applications

Some more details∗

If F(1) and F(2) are isomorphic then:

I A place P(1) is mapped to a place P(2).

I We have deg(P(1)) = deg(P(2)).

I L(nP(1)), L(nP(2)) and W (P(1)), W (P(2)) are isomorphic.

I There is a bijection between the sets of Weierstrass places.

I There is a bijection between the sets of places of smallest
degree.

The sets of Weierstrass places are finite. If K is finite, the sets
of places of smallest degree are also finite.

If P(1) is taken from such a set then there are only finitely
many possibilities for its image P(2).

Goal: Turn these necessary conditions for the existence of an
isomorphism into a sufficient condition!
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Special Generators∗

Suppose φ is an isomorphism of F(1)/K to F(2)/K such that
P(1) is mapped to P(2) and assume deg(P(α)) = 1.

We define some special pole numbers:

I Let m0 = 0 and m1 = s > 0 be minimal in W (P(α)).

I Furthermore, let mi be minimal in W (P(α)) such that
mi 6≡ mj mod s for all 0 < j < i .

I This yields mi up to i = s, and the mi are generators of
W (P(α)).
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The notation α means that α = 1 or α = 2, and that any computation need to be carried
out in F(1) and F(2) separately. If there is no index α, then the computed values need to
be the same for F(1) and F(2), otherwise there cannot be an isomorphism.
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Special Generators∗

We define some corresponding elements of F(α):

I x(α),i ∈ L(miP(α))\L((mi − 1)P(α)).

I Then
1, x(α),2, x(α),3, . . . , x(α),s

are a reduced integral basis of Cl(K [x(α),1],F(α)).

I The relation ideal of the x(α),1, x(α),2, . . . , x(α),s is
generated by polynomials of the form

ti tj − λ(α),i ,j ,1(t1)−
m1∑

ν=2

λ(α),i ,j ,ν(t1)tν (2 ≤ i , j ≤ s)

I In other words, these are the defining polynomials of the
corresponding affine regular curve.
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Very Special Generators∗

Theorem. Assume further that s is coprime to char(F ), if the
latter is not zero. Then F(1)/K and F(2)/K are isomorphic and
the isomorphism maps P(1) to P(2) if and only if there are

x(α),1, . . . , x(α),s

as above and c , d ∈ K with c 6= 0 such that

φ(x(1),1) = csx(2),1 + d and φ(x(1),i ) = csx(2),i for i ≥ 2 .
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Computing Isomorphisms∗

These x(α),i can be computed independently of each other and
of φ by some rather technical trickery:

I The n-th root of x(α),1 is chosen as a local uniformiser π(α)
at P(α). This is depends only of two parameters c and d .

I The x(α),i are written as Laurent series in π(α).

I Using Gaussian elimination, as many as possible
coefficients are reduced to zero. This leads to the new
x(α),i like in the theorem.

I A coefficientwise comparison of the defining polynomials
on slide 20 gives equations for c and d which can easily be
solved.
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Variations∗

There is no P(α) with deg(P(α)) = 1:

I Use constant field extension wrt K1/K and K1 = K (P(α)).

I Test, whether isomorphisms over K1 are defined over K .

There is no P(α) with deg(P(α)) = 1 and gcd{s, char(K )} = 1:

I Replace P(α) by suitable D(α) with dim(D(α)) = 1 in the
computation of π(α).

I Helps sometimes, but not always ...
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Working with Different Generators∗

Need to compute with isomorphisms. Write generators of one
field in the generators of the other field ...

1. x(α),i are represented in generators of F(α), this gives

ι(α) : k(x(α),1, . . . , x(α),s)→ F(α).

2. Represent generators of F(α) in K (x(α),1, . . . , x(α),s).

I Gröbner basis approach bad, better use linear algebra.

I Let f(α) ∈ F×(α). Then there is d ≥ 0 such that

L(rP(α)) ∩ fL(rP(α)) 6= {0}. Then h1 = f(α)h2 with
hi ∈ L(rP(α))\{0} and hi is a polynomial in the x(α),i .

I Apply this to generators of F(α)/K , gives

ι−1(α) : F(α) → K (x(α),1, . . . , x(α),s).
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