
Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Lecture 1

Function Fields, Curves

and Global sections

Summer School UNCG 2016

Florian Hess

1 / 44



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Introduction

2 / 44



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Function Fields vs. Curves

Function fields vs. regular complete curves:

I Essentially boil down to the same thing - there is an
equivalence of categories.

I If base field is C then there is another equivalence of
categories, to compact Riemann surfaces and covering
maps.

I So using one term over the other is more a socialogical
question about one’s mathematical genesis or point of
view ...

I Best to know all three ...

Curves can also be singular, this gives some added ways of
expressing matters.
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Function Fields

Let K be a field. An algebraic function field of one variable is a
field extension F/K of transcendence degree one.

This means that there is x ∈ F such that x is transcendental
over K and F/K (x) is finite.

The exact constant field of F/K is the algebraic closure K ′ of
K in F .

The extension F/K ′ is also an algebraic function field of one
variable, the x from above is still transcendental over K ′ and
F/K ′(x) is finite.

In theory one can always assume w.l.o.g. that K ′ = K . In
practice one can not or should not.
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Separating Elements

The element x is called separating for F/K if F/K (x) is
separable. It is a theorem that if K is perfect then there is
always a separating element for F/K .

Fields of characteristic zero, finite fields and algebraically closed
fields are perfect. Any algebraic extension field of a perfect
field is perfect.

Example. The polynomial y 2 + x2 + t ∈ F2(t, x)[y ] is
irreducible and purely inseparable. Thus

F = F2(t, x)[y ]/〈y 2 + x2 + t〉

is a purely inseparable field extension of degree two of F2(t, x).
Then F/F2(t) is an algebraic function field without a
separating element.
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Local rings and Points

We give a “function field” based approach to curves in the
spirit of Hartshorne I.6, including singular curves.

Let F/K be an algebraic function field. A subring of F/K is a
proper subring O of F with K× ⊆ O× and Quot(O) = F .

If O is subring of F/K and a local ring with maximal ideal m
we call it a point P of F/K with local ring OP = O and max-
imal ideal mP = m.

A place of F/K is regarded as point of F/K .
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Domination

Let P und Q be points of F/K . We say that P is dominated
by Q if OP ⊆ OQ and mP ⊆ mQ holds.

We define supp(P) as the set of places Q of F/K such that P
is dominated by Q.

Theorem. The sets supp(P) are non-empty and finite. The
residue class fields OP/mP are finite over K .
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Sets of Points and Curves

We will only consider sets U of points of F/K that are

I admissible, i.e. almost all points of U are places.

I separated, i.e. for every place Q of F/K there is at most
one P ∈ U such that P is dominated by Q.

Let Uc denote the set of places of F/K that are not contained
in ∪P∈Usupp(P). Then U is called cofinite, complete, and
affine if Uc is finite, empty and non-empty respectively.

A curve C over K is an admissible separated cofinite set of
points of F/K .

The function field of C is K (C ) = F .

A point P ∈ C is regular if P is a place, otherwise singular.
The curve is regular if all points of C are regular.
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Subrings

Let P ∈ C and U ⊆ C . We define OC ,P = OP and

OC (U) = ∩P∈U OC ,P ,

where the empty intersection is defined as F .

Theorem. Suppose U is affine.

1. The rings OC (U) are subrings of F/K and the maps

P 7→ OC (U) ∩mP and m 7→ OC (U)m

give mutually inverse bijections from U to the set of
non-zero maximal ideals of OC (U).

2. Every point in U is regular if and only if OC (U) is a
Dedekind domain.

3. With DU(f ) = {P ∈ U | f 6∈ mP} for f ∈ OC (U),

OC (DU(f )) = OC (U)[f −1].
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Affine Curves

If R is a subring of F/K we define Specm(R) to be the set of
points of F/K defined by Rm where m ranges over the maximal
ideals of R.

Theorem. The map C 7→ OC (C ) gives an inclusion-reversing
bijection of the set of affine curves C over K with K (C ) = F
to the set of subrings R of F/K that are finitely generated
K -algebras. Its inverse is given by R 7→ Specm(R).

This provides the link to the usual definition of affine curves.
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Curves as Topological Spaces∗

Let C be a curve over K . A subset U of C is called open if U
is empty or C\U is finite.

Theorem. Let C be a curve over K .

1. Then C with its open sets is a topological space.

2 Moreover, it is an irreducible, one-dimensional T1-space
and any open subset of C is quasicompact.

3. If C is affine the sets DC (f ) form a basis of the open sets
of C .
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Morphisms

Let X and Y be curves over K . A morphism φ : X → Y is
defined by a K -algebra monomorphism φ# : K (Y )→ K (X )
such that φ# restricts for each P ∈ X to

φ#
P : OY ,φ(P) → OX ,P .

Then φ(P) = (φ#
P )−1(P), and if U ⊆ Y we obtain by further

restriction
φ#(U) : OY (U)→ OX (φ−1(U)).

The degree of φ is deg(φ) = [K (X ) : φ#(K (Y ))].
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Properties

Theorem.

1. φ has finite fibres and is continous.

2. If X is complete then Y is complete and OX (φ−1(U)) is
finite over OY (U).

3. If P ∈ X is regular and Y is complete, then any
morphism X\{P} → Y can be uniquely extended to a
morphism X → Y .

4. The map φ 7→ φ# gives a bijection of the sets of
morphismus X → Y of regular complete curves and of
K -algebra monomorphisms K (Y )→ K (X ).

If φ : X → Y is a morphism, one says that φ is separable or
that φ is ramified over Q ∈ Y etc., if the corresponding
properties hold for the extension K (X )/φ#(K (Y )) and
involved places.
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Example

Let F/K be the rational function field over K .

We define A1 as the set of places of F/K corresponding to the
maximal ideals of K [x ], where x is a generator of F/K . This is
a regular affine curve.

We define P1 as the set of places of F/K . This is a regular
complete curve.

There is a bijection between the set of generators of F/K and
the set of morphisms A1 → P1 of degree one.
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Normalisation

Let C be curve over K .

The normalisation C̃ of C is the set of places of K (C ) that
dominate points of C .

There is a morphism φ : C̃ → C of degree one, mapping each
place to the point of C that it dominates.

The normalisation C̃ of C is a regular curve. If C is complete
then C̃ is also complete.

OC̃ (φ−1(U)) is the integral closure of OC (U) in K (C ).

Normalisation is thus also desingularisation!
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Representation and Definition of

Function Fields and Curves
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General Idea

Task: Represent

I irreducible complete regular curve C over a field K , with

I morphism φ : C → P1 of degree n.

This can be done using K [x ]-algebras that are finitely
generated, free modules over K [x ] of rank n, called K [x ]-orders.

Advantages and disadvantages:

I Linear algebra over K [x ] vs. Gröbner basis computations.

I Many existing algorithms from algebraic number theory,
e.g. normalisation, ideal arithmetic, valuations, residue
class fields, different etc.

There are of course other approaches and points of view
(projective, geometric, Khuri-Makdisi).
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Representation using orders

We embed K (P1) via φ∗ into K (C ) and choose x ∈ K (P1) to
correspond to φ. The pole of x in P1 is denoted by ∞.

Thus have function field K (C )/K and field extension
K (C )/K (x) of degree n.

Cover P1 by two affine open subsets U0, U∞ isomorphic to A1

with OP1(U0) = K [x ] and OP1(U∞) = K [1/x ].

Then V0 = φ−1(U0) and V∞ = φ−1(U∞) are open affines that
cover C .
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Representation using orders

Write R0 = OC (V0) and R∞ = OC (V∞).

We know that R0 is finite over K [x ] = OP1(U0) and R∞ is
finite over K [1/x ] = OP1(U∞).

Thus R0 and R∞ are K [x ]- and K [1/x ]-orders of rank n.

We can fix bases of R0 and R∞ of length n whose relation
ideals are generated by quadratic polynomials (and form a
Gröbner basis).

These bases are related by a transformation matrix in K (x)n×n,
which describes the overlap (glueing) of V0 and V∞.
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Definition Via Affine Curve

How do we explicitly define such a C as above?

Start with

I irreducible affine algebraic curve C0 over a field K ,

I a finite map α0 : C0 → A1.

Then complete and normalise!

Representation of C0:

I Coordinate ring R0 of C0 as quotient of polynomial ring by
suitable ideal such that R0 is K [x ]-order.

I Often αi = y i with f (x , y) = 0 and f irreducible, monic
and of degree n in y .

Example. f (x , y) = y 2 − x7 + 1.
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Completion Step

Complete as follows:

I Divide generators of R0 by suitable powers of x such that
they become integral over K [1/x ] and hence resulting
relations are also defined over K [1/x ].

I Results in K [1/x ]-order R∞.

I Then have C0 = Specm(R0), C∞ = Specm(R∞) and
α0 : C0 → A1, α∞ : C∞ → A1.

I Since R0 is integral over K [x ], every zero of x dominates a
maximal ideal of R0.

I Since R∞ is integral over K [1/x ], every pole of x
dominates a maximal ideal of R∞.

I This combines (glues) to a complete curve
C0,∞ = C0 ∪ C∞ and morphism α : C0,∞ → P1.
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Completion Step

Example.

I C0 : y 2 = x7 − 1.

I y/x4 is integral over Q[1/x ]: (y/x4)2 = 1/x − (1/x)8.

I Thus R0 = K [x , y ], R∞ = K [1/x , y/x4], and

I C0,∞ = Specm(R0) ∪ Specm(R∞).

I Is regular in characteristic 6= 2, 7.
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Normalisation Step

Normalise and hence desingularise C0,∞ as follows:

I Compute R̃0 = Cl(R0,K (C0)), R̃∞ = Cl(R∞,K (C0)).

I The normalisations of C0 and C∞ are C̃0 = Specm(R̃0)
and C̃∞ = Specm(R̃∞).

I Define C = C̃0 ∪ C̃∞. This gives the regular complete
curve C and the normalisation morphism β : C → C0,∞.

I Composing yields the morphism φ = α ◦ β : C → P1.

Data to be stored: Defining relations for R0, transformation
matrices between bases of R0 and R∞, between bases of R̃0

and R0, and between bases of R̃∞ and R∞. These matrices are
in K (x)n×n or even K [x ]n×n.
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Normalisation Algorithms

There are various normalisation and desingularisation algo-
rithms. Some require α to be separable, K to be perfect or
even char(K ) = 0.

Some references:

I Zassenhaus (Round2, Round4)

I Grauert-Remmert (Decker, ...)

I van Hoeij

I Montes-Nart

I Chistov: Polynomial time equivalent to factoring
discriminant of f .

Recent activity:

I J. Bauch: Computation of Integral Bases, 2015.

I Singular Group at Kaiserslautern, 2015.

I What is when the fastest method?
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Magma

Let ∞ denote the pole of x in P1 and O∞ the local ring of ∞.

In Magma and its function field package,
I R0 and R∞O∞ are called finite and infinite (equation)

orders, R̃0 and R̃∞O∞ are called finite and infinite
maximal orders.

I Places are uniquely represented as maximal ideals in the
maximal orders, by explicit generators.

I The poles of x are called places at infinity.
I A host of algorithms from algebraic number theory is quasi

readily available, e.g. integral closures, valuations, residue
class fields.

These objects are more considered of internal type. One can
work with places rather like in Stichtenoth, without knowing
those background details.

There is a curve data type in Magma, but it is different from
(although equivalent to) that presented here.
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Global Sections,

Riemann-Roch and an Application
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Outline

Start with function field F/K and divisor D of F/K .

Compute the K -vector space

L(D) = {f ∈ F× | div(f ) ≥ −D} ∪ {0}

of global sections of D !

Approaches are based on:
I Curves and Brill-Noether method of adjoints
I Integral closures and series expansions
I Sheaves and Grothendiecks theorem

Recent activity:
I J. Bauch: Lattices over Polynomial Rings and Applications

to Function Fields, 2014.
I I. Stenger: Computing Riemann-Roch Spaces - a

geometric approach, 2014.
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Sheaves

Let C be a curve over K with function field F .

Let M an F -vector space and FP submodules of the OC ,P -mo-
dules M such that FFp = M for all P ∈ C and each f ∈ M is
contained in almost all FP . Define

F(U) = ∩P∈UFP ,

where the empty intersection is defined as M.

Each F(U) is a torsion-free OC (U)-module and F is called a
sheaf of locally torsion-free OC -modules.

The elements of F(U) are called sections over U, and global
sections when U = C .

Example. OC is such a sheaf, or better a sheaf of rings, and is
called structure sheaf of C .

28 / 44



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Sheaves

Theorem. Let F be a sheaf of locally torsion-free OC -mo-
dules.

1. We have

F(U) ⊆ F(V ) and F(U) = ∩i∈IF(Ui )

for V ⊆ U and for any family (Ui )i∈I with U = ∪i∈IUi .

2. For all U ⊆ C affine, P ∈ U and m the corresponding
maximal ideal of OC (U),

F(U)m = FP .

3. For all U ⊆ C affine and f ∈ OC (U),

F(DU(f )) = F(U)[f −1].
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Sheaves

A sheaf F of locally torsion-free OC -modules is said to be
locally finitely generated if all FP are finitely generated and if
each basis of M is also a basis of FP for almost all P ∈ C .

Theorem. Let F be a sheaf of locally torsion-free and finitely
generated OC -modules. Then each F(U) for U affine is finitely
generated.

Example. The structure sheaf OC is locally torsion-free and
finitely generated.
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Sheaf of a divisor

Let C denote a regular complete curve with function field F
and D a divisor of C resp. F/K .

The sheaf OC (D) associated to D is defined by

OC (D)(U) = {f ∈ F× | vP(f ) ≥ vP(−D) for all P ∈ U} ∪ {0}.

It is a locally torsion-free and finitely generated sheaf of
OC -modules with

L(D) = OC (D)(C ).

In other words, the OC (D)(U) are non-zero fractional ideals of
the Dedekind domains OC (U).

31 / 44



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Representation using two free modules

Since V0 and V∞ are an open affine cover of C , the sheaf F
can be represented by the torsion-free finitely generated
modules F(V0) of R0 and F(V∞) of R∞ and

F(C ) = F(V0) ∩ F(V∞).

The modules F(V0) and F(V∞) are also torsion-free and
finitely generated K [x ]- and K [1/x ]-modules and thus are free
of rank n dimF (M) inside the K (x)-vector space M of
dimension n dimF (M). They can thus be explicity described by
their bases.

To compute the intersection we need to find all f ∈ M which
can be written as a K [x ]-linear combination of the basis of
F(V0) and as a K [1/x ]-linear combination of the basis of
F(V∞) simultaneously.
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Diagonalisation

The key proposition is as follows:

Proposition. Let A ∈ GL(n,K [x , 1/x ]). Then there are
S ∈ GL(n,K [x ]) and T ∈ GL(n,K [1/x ]) such that

TAS = (xdi δi ,j)i ,j

with d1 ≥ · · · ≥ dn uniquely determined.

The proof essentially uses

I matrix reduction (Dedekind-Weber, weak Popov form,
lattice reduction in function fields),

I or Birkhoff’s matrix decomposition.

Thus need to find λ ∈ K [x ] such that x−dλ ∈ K [1/x ]. These
are precisely the λ ∈ K [x ] with deg(λ) ≤ d .
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Global Sections

Denote by F(r) the sheaf defined by

F(r)(V0) = F(V0) and F(r)(V∞\V0) = x r · F(V∞\V0).

Theorem. Recall n = [K (C ) : K (x)]. There exist K (x)-linearly
independent f1, . . . , fn ∈ M and uniquely determined
d1 ≥ · · · ≥ dn such that for all r :

F(r)(C ) =

{
n∑

i=1

λi fi |λi ∈ K [x ] and deg(λi ) ≤ di + r

}
.

Moreover,

I the f1, . . . , fn are a K [x ]-basis of F(V0) and

I the xd1f1, . . . , x
dn fn are a K [1/x ]-basis of F(V∞).

These bases are called reduced.
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Push Forward of a Sheaf∗

Let φ : X → Y be a morphism of the curves X and Y , and F a
locally torsion-free sheaf of OX -modules.

We define the push forward φ∗(F) of F along φ via

φ∗(F)(U) = F(φ−1(U))

for any U ⊆ Y .

Theorem. Then φ∗(F) is a locally torsion-free sheaf of
OY -modules. If X is complete and F is finitely generated, then
φ∗(F) is also finitely generated.
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Isomorphisms of Sheaves∗

Let F and G be sheaves of OC -modules inside the F -vector
spaces M and N respectively.

A morphism f : F → G is given by an F -linear map M → N
that restricts to OX ,P -module homomorphisms

fP : FP → GP .

It then also restricts to OX (U)-module homomorphisms

f (U) : F(U)→ G(U).

We say f is an isomorphism if all fP are isomorphisms. Then all
f (U) are also isomorphisms.
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Direct Sum of Sheaves∗

Let F and G be sheaves of OC -modules inside the F -vector
spaces M and N respectively.

We define F ⊕ G as the sheaf of OC -modules inside M ⊕ N
defined by

(F ⊕ G)P = FP ⊕ GP
for all P ∈ C . Then also

(F ⊕ G)(U) = F(U)⊕ G(U)

for all U ⊆ C .

If F and G are locally torsion-free then F ⊕ G is locally
torsion-free. If in addition F and G are locally finitely
generated then F ⊕ G is locally finitely generated.
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Grothendiecks Theorem∗

Let C be complete and φ : C → P1 a morphism of degree n.
Let F be a locally torsion-free and finitely generated sheaf of
OC -modules.

Grothendieck’s Theorem:

φ∗(F) ∼= OP1(d1∞)⊕ · · · ⊕ OP1(dn∞)

with d1 ≥ · · · ≥ dn uniquely determined.

We have indeed computed F(C ) via

F(C ) = φ∗(F)(P1)

∼= OP1(d1∞)(P1)⊕ · · · ⊕ OP1(dn∞)(P1) !
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Relation to Riemann-Roch

OC (C ) is the algebraic closure of K in C . Suppose
K = OC (C ) and let g denote the genus of C .

Let F = OC (D). The numbers di satisfy

I d1 ≥ · · · ≥ dn.

I
∑n

i=1 di = deg(D) + 1− g − n

I L(D) 6= 0 iff d1 ≥ 0.

I deg(D) ≥ d1 & (deg(D)− g)/n,

I D non-special implies dn ≥ 0.

I dn & (deg(D)− 2g)/n.

I d1 − dn . 2g/n.

I OC (C ) = L(0).

The d1, . . . , dn are thus balanced.
If D = 0 then g can be computed from d1, . . . , dn.

39 / 44



Algorithmics of
Function Fields

1 Function
Fields, Curves,

Global
Sections

Introduction

Function Fields
vs. Curves

Function Fields

Curves

Representation
and Definition

Representation

Via Affine Curve

Completion

Normalisation

Magma

Global
Sections

Outline

Sheaves

Diagonalisation

Global Sections

Grothendiecks
Theorem

Riemann-Roch

Special Models

Magma

Exercises

Application: Special Models

When applied to I = OC the theorem yields

I a specific representation of C and

I also gives an embedding of C in a weighted n-dimensional
projective space, depending on φ.

I The weights are given by the −di .

Example. C : y 2 = zx7 − z8 over Q where w(x) = w(z) = 1
and w(y) = 4, is regular.

The affine ring R0 of C is generated by x and n additional
variables. Relations are at most quadratic in these variables
and of degree O(g/n) in x .
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Gonality

In practice rather sensitive to n.

Thus

I minimize n, find φ of lowest degree. But in
general n = Θ(g).

I substitute variables by powers of others, if possible.

Recent activity:

J. Schicho and D. Sevilla: Effective radical parametrization of
trigonal curves, 2011.

M. C. Harrison: Explicit solution by radicals, gonal maps and
plane models of algebraic curves of genus 5 or 6, 2013.
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Magma and other Implementations

Probably not exhaustive ...

Global sections:

I via Grothendiecks theorem: Magma

I via saturation of homogenous ideals: Magma,
MacCaulay2, Singular.

Maps of minimal degree:

I via Schicho and Sevilla: Magma

I via Harrison: Magma
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Excercises

1. Compute a complete regular curve C in the sense of these slides
with function field Q(x , y), where y 7 − y 2 = x2, and show by the
approach presented here that the genus of C is 2.

2. Suppose C is a regular curve and let U ⊆ C be finite. Show that
OC (U) is a principal ideal domain.

3. Suppose C is a regular curve and let U ⊆ C be affine. Show that
every fractional ideal of OC (U) can be generated by two elements of
K (C ).

4. Find a complete curve C over K where OC (C ) 6= K . Verify the
latter using Magma.

5. Find a curve C over some K such that there is no separable
morphism C → P1.

6. Provide examples that in the relation of domination the cases
O×

P ( O×
Q and mP = mQ as well as O×

P = O×
Q and mP ( mQ can

indeed occur.
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Excercises∗

For the following excercises let C be a complete curve over K .

7. Show that there is a morphism C → P1 and a non-zero
K (P1)-linear map K (C )→ K (P1).

8. Show that for every sheaf F of locally torsion-free and finitely
generated OC -modules there is a sheaf F# of locally torsion-free and
finitely generated OC -modules such that if φ∗(F) ∼= ⊕iOP1 (di ) then

φ∗(F#) ∼= ⊕iOP1 (−di ).

9. In the situation of excerise 8 show there is a sheaf F∗ of locally
torsion-free and finitely generated OC -modules such that
φ∗(F∗) ∼= ⊕iOP1 (−di − 2).

10. Adapt matters if necessary and define a degree deg(F) of locally
torsion-free and finitely generated OC -modules such that

dimK (F(C ))− dimK (F∗(C )) = deg(F) + c ,

where c depends only on C and dimK(C) F(∅).

44 / 44


	Introduction
	Function Fields vs. Curves
	Function Fields
	Curves

	Representation and Definition
	Representation
	Via Affine Curve
	Completion
	Normalisation
	Magma

	Global Sections
	Outline
	Sheaves
	Diagonalisation
	Global Sections
	Grothendiecks Theorem
	Riemann-Roch
	Special Models
	Magma

	Exercises

