2 Number Theory

## Lecture 2

# Algorithmic Number Theory for Function Fields 

Summer School UNCG 2016

Florian Hess

Algorithmics of Function Fields

2 Number
Theory

Class Groups
Mathematical
Background
Computing in the Class Group
Computing the
Class Group
Class Groups
Applications
Class Fields
Mathematical
Background
Computing Ray Class Groups
Computing Class Fields
Applications
Zeta functions and L-series
Mathematical Background
Computing
L-series
Applications
First Part

## Notation

2 Number Theory

Consider complete regular curves $C$ over a field $K$. We can then equivalently work with $F=K(C)$ only.

Notation:

- Group of divisors $\operatorname{Div}(F / K)$.
- Subset of divisors of degree $d$ : $\operatorname{Div}^{d}(F / K)$.
- Subgroup of principal divisors of $\operatorname{Princ}(F / K)$.
- Class group or Picard group: $\operatorname{Pic}(F / K)$.
- Subgroup of class of degree $d$ : $\operatorname{Pic}^{d}(F / K)$.

By definition,

$$
\begin{aligned}
\operatorname{Pic}(F / K) & =\operatorname{Div}(F / K) / \operatorname{Princ}(F / K), \\
\operatorname{Pic}^{0}(F / K) & =\operatorname{Div}^{0}(F / K) / \operatorname{Princ}(F / K) .
\end{aligned}
$$

## Some Facts

We have

$$
\operatorname{Pic}(F / K)=\operatorname{Pic}^{0}(F / K) \oplus\langle A\rangle
$$

where $A$ is a divisor of $F / K$ with minimal positive degree.
If $K$ is a finite field are algebraically closed then $\operatorname{deg}(A)=1$. In the latter case $A$ can be chosen to be a prime divisor.

If $K$ is finitely generated over its prime field then $\mathrm{Pic}^{0}(F / K)$ is finitely generated.

If $K$ is a finite field then $\operatorname{Pic}^{0}(F / K)$ is finite. Then usually

$$
\# \operatorname{Pic}^{0}(F / K) \approx(\# K)^{g} .
$$

## Computing in the Class Group

2 Number Theory

Representation of divisors:

- Divisors can be represented as a sum of places with integral coefficients, or as a pair of fractional ideals.
- Addition of divisors either by addition of coefficient vectors or multiplication of ideals.
- Equality by coefficientwise comparison or comparison of Hermite normal forms.

Representation of divisor classes:

- By divisors, which can be "suitably" chosen, for example reduced divisors.
- Comparison via unique divisor class representatives, if they can be computed, or by the test

$$
\operatorname{deg}(D)=\operatorname{deg}(E) \text { and } L(D-E) \neq 0
$$

- This is usally efficient (polynomial time) in terms of operations in $K$.


## Computing in the Class Group

Reduction of divisors:

- Fix a divisor $A$ of positive degree.
- For every $D$ there is $\tilde{D} \geq 0$ and $f \in F^{\times}$such that

$$
D=\tilde{D}-r A+\operatorname{div}(f)
$$

and $\operatorname{deg}(\tilde{D}) \leq g+\operatorname{deg}(A)-1$.

- If $A$ is a prime divisor of degree one and $r$ is minimal then $\tilde{D}$ is uniquely determined.

Class representatives:

- Thus $[D]=[\tilde{D}-r A]$ for every divisor class.
- If $A$ is a prime divisor of degree one then $\tilde{D}-r A$ can be uniquely chosen.


## Computing in the Class Group

2 Number Theory

Reduction of divisors:

- The reduced divisor $\tilde{D}$ can be computed by an iterative double-and-add method such that the runtime is polynomial in $g, \operatorname{deg}(A)$ and the length of $D$.
- Moreover, $f$ is computed as a product of powers of elements of $F$ and has length polynomial in $g, \operatorname{deg}(A)$ and the length of $D$.


## Computing in the Class Group

These ideas can be optimised, for example by precomputations, and worked out in great detail.

A (biased) selection of results:

- Cantor: If $F / K$ is hyperelliptic then operations in $\mathrm{Pic}^{0}(F / K)$ can be reduced to fast polynomial arithmetic in degree $O(g)$, so the runtime is $O^{\sim}(g)$.
- Makdisi: If $F / K$ is arbitrary then operations in $\mathrm{Pic}^{0}(F / K)$ can be reduced to fast matrix arithmetic in dimension $O(g)$, so the runtime is $O^{\sim}\left(g^{\omega}\right)$.
- Hess-Junge: If $F / K$ has a rational subfield of index $n$, where $n=O(g)$ is always possible, then operations in $\mathrm{Pic}^{0}(F / K)$ can be reduced to fast polynomial matrix arithmetic in dimension $O(n)$ and degree $O(g / n)$, so the runtime is $O^{\sim}\left(n^{\omega}(g / n)\right)$.

2 Number Theory

## Computing the Class Group

We assume that $K$ is finite! Write $q=\# K$.
Have $\operatorname{Pic}^{0}(F / K) \cong \mathbb{Z} / c_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / c_{2 g} \mathbb{Z}$. with $c_{i} \mid c_{i+1}$.
Goal:

- Compute the $c_{i}$.
- Compute images and preimages under a fixed isomorphism

$$
\phi: \operatorname{Pic}(F / K) \rightarrow \mathbb{Z} \oplus \mathbb{Z} / c_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / c_{2 g} \mathbb{Z}
$$

Denote by $A$ a fixed divisor of degree one that maps under $\phi$ to the first cyclic factor of the codomain of $\phi$.

## Computing the Class Group

Algorithms that work for any finite abelian group $G$ :

- Classic runtime $O\left((\# G)^{1 / 2}\right)$.
- Improvements often lead to $O\left((\# G)^{1 / 3}\right)$.
- So here roughly $O^{\sim}\left(q^{g / 2}\right)$ or $O^{\sim}\left(q^{g / 3}\right)$.

Algorithms that use $G=\operatorname{Pic}^{0}(F / K)$ usually employ an index calculus strategy:

- If $q$ is small and $g$ is large, the (heuristic) runtime is $q^{(c+o(1)) g^{1 / 2} \log (g)^{1 / 2}}$, and $q^{(d+o(1)) g^{1 / 3} \log (g)^{2 / 3}(\dagger)}$ in special families.
- If $q$ is large and $g \geq 2$ fixed, then $O^{\sim}\left(q^{2-2 / g}\right)^{(\dagger)}$.
${ }^{(\dagger)}$ : This is for discrete logarithms, so restrictions may apply.


## Index Calculus

2 Number Theory

Setup:

- Let $S$ denote the set of places of $F / K$ of degree $\leq r$, called factor basis.
- Let $\left[D_{1}\right], \ldots,\left[D_{s}\right]$ denote generators of $\left.\mathrm{Pic}^{0} / F / K\right)$.

Relation search:

- Choose random $\lambda_{i}$ and compute $[\tilde{D}-I A]=\sum_{i} \lambda_{i}\left[D_{i}\right]$ with $\tilde{D}$ reduced.
- Factor $\tilde{D}$ over $S$, if possible and obtain

$$
\sum_{i} \lambda_{i}\left[D_{i}\right]=[\tilde{D}-I A]=-I[A]+\sum_{P \in S} n_{P}[P] .
$$

- Store $\lambda_{i}$ and $n_{P}$ as rows of a matrix and repeat.


## Index Calculus

Linear algebra:

- If matrix has full rank and sufficiently more rows than columns use a Hermite normal form computation to derive relations between the generators $\left[D_{i}\right]$.
- Use a Smith normal form computation to derive $c_{1}, \ldots, c_{2 g}$ from those relations.

Why does it work?

- There is a good upper bound on $r$.
- The class number can be efficiently approximated and checked against the computed $c_{1}, \ldots, c_{2 g}$.
- There is a reasonable good (heuristic) probability that enough relations are obtained.


## Index Calculus

Let $N_{m}$ denote the number of places of degree one in the constant field extension of $F$ of degree $m$.

Theorem. Suppose $N_{r}>(g-1) 2 q^{r / 2}$. Then $\operatorname{Pic}(F / K)$ is generated by the places of degree $\leq r$ and the places in supp $(A)$.

Theorem. Let $h=\# \operatorname{Pic}^{0}(F / K)$. Then

$$
\left|\log \left(\frac{h}{q^{g}}\right)-\sum_{m=1}^{t} \frac{q^{-m}}{m}\left(N_{m}-q^{m}-1\right)\right| \leq \frac{2 g}{q^{1 / 2}-1} \cdot \frac{q^{-t / 2}}{t+1}
$$

Since $c_{1} \ldots c_{2 g}$ is an integral multiple of $h$ an approximation of $\log \left(h / q^{g}\right)$ up to an error of $\log (2) / 3$ is sufficient.

## Some Applications

From the relations of the $\left[D_{i}\right]$ it is easy to compute generators of $\operatorname{Pic}^{0}(F / K)$ corresponding to the cyclic generators of the codomain of $\phi$. We can thus also compute preimages under $\phi$ efficiently.

Images $\phi([D])$ are computed by adding $[D-\operatorname{deg}(D) A]$ to the [ $D_{i}$ ] and searching for relations. The runtime is then basically the same like that for computing the $c_{1}, \ldots, c_{2 g}$.

This can directly be used to compute for an arbitrary $S$

- S-units $U(S)=\left\{f \in F^{\times} \mid \operatorname{supp}(\operatorname{div}(f)) \subseteq S\right\}$ and
- S-class groups $\operatorname{Div}(F / K) /(\langle S\rangle+\operatorname{Princ}(F / K))$.

Algorithmics of Function Fields

2 Number
Theory

## Class Groups

Mathematical
Background
Computing in the Class Group
Computing the
Class Group
Applications
Class Fields
Mathematical
Background
Computing Ray Class Groups
Computing Class Fields
Applications

## Zeta functions

 and L-seriesMathematical Background
Computing
L-series
Applications

# Class Fields 

Second Part

## Notation

Notation:

- Let $\mathfrak{m}$ denote an effective divisor, called modulus.
- $\operatorname{Div}_{\mathfrak{m}}(F / K)$ group of divisors coprime to $\mathfrak{m}$.
- $F_{\mathfrak{m}}^{\times}=\left\{f \in F^{\times} \mid v_{P}(f-1) \geq v_{P}(\mathfrak{m})\right.$ for all $\left.P\right\}$ group of elements congruent to one modulo $\mathfrak{m}$.
- $\operatorname{Princ}_{\mathfrak{m}}(F / K)=\left\{\operatorname{div}(f) \mid f \in F_{\mathfrak{m}}^{\times}\right\}$, the ray modulo $\mathfrak{m}$.
- $\operatorname{Pic}_{\mathfrak{m}}(F / K)=\operatorname{Div}_{\mathfrak{m}}(F / K) / \operatorname{Princ}_{\mathfrak{m}}(F / K)$, the ray class group modulo m .
$-\phi_{\mathfrak{m}, \mathfrak{n}}: \operatorname{Pic}_{\mathfrak{m}}(F / K) \rightarrow \operatorname{Pic}_{\mathfrak{n}}(F / K),[D]_{\mathfrak{m}} \mapsto[D]_{\mathfrak{n}}$ for $\mathfrak{n} \geq \mathfrak{m}$.
We have $\operatorname{Princ}_{\operatorname{gcd}(\mathfrak{m}, \mathfrak{n})}(F / K)=\operatorname{Princ}_{\mathfrak{m}}(F / K)+\operatorname{Princ}_{\mathfrak{n}}(F / K)$.
The $\phi_{\mathfrak{m}, \mathfrak{n}}$ are epimorphisms.


## Artin Map

2 Number Theory

Let $E / F$ be a finite abelian extension. Let $P$ be place of $F / K$ and write $N(P)=\# \mathcal{O}_{P} / \mathfrak{m}_{P}=q^{\operatorname{deg}(P)}$.

If $P$ is unramified in $E / F$ then there is a uniquely determined $\sigma_{P} \in \operatorname{Gal}(E / F)$ satisfying

$$
\sigma_{P}(x) \equiv x^{N(P)} \bmod \mathfrak{m}_{Q}
$$

for all places $Q$ of $E / K$ above $P$ and all $x \in \mathcal{O}_{Q}$.
Suppose $E / F$ is unramified outside $\operatorname{supp}(\mathfrak{m})$. The Artin map is defined as

$$
A_{E / F}: \operatorname{Div}_{\mathfrak{m}}(F / K) \rightarrow \operatorname{Gal}(E / F), \quad D \mapsto \prod_{P} \sigma_{P}^{v_{P}(D)}
$$

## Some Properties of the Artin Map

2 Number Theory

## Theorem.

- The Artin map is surjective.
- If the multiplicities of $\mathfrak{m}$ are large enough then

$$
\operatorname{Princ}_{\mathfrak{m}}(F / K) \subseteq \operatorname{ker}\left(A_{E / F}\right)
$$

Any $\mathfrak{m}$ like in the theorem is called a modulus of $E / F$. There is a smallest modulus $\mathfrak{f}(E / F)$ of $E / F$, called conductor of $E / F$. Every place in $\mathfrak{m}$ is ramified in $E / F$.

If $\mathfrak{m}$ is a modulus of $E / F$ then regard

$$
A_{E / F}: \operatorname{Pic}_{\mathfrak{m}}(F / K) \rightarrow \operatorname{Gal}(E / F)
$$

Thus if $H=\operatorname{ker}\left(A_{E / F}\right)$ then $H$ has finite index in $\operatorname{Pic}_{\mathfrak{m}}(F / K)$ and

$$
\operatorname{Gal}(E / F) \cong \operatorname{Pic}_{\mathfrak{m}}(F / K) / H
$$

## Norm Map and Class Fields

Define

$$
\mathrm{N}_{E / F}: \operatorname{Pic}_{\operatorname{Con}_{E / F}(\mathfrak{m})}(E / K) \rightarrow \operatorname{Pic}_{\mathfrak{m}}(F / K)
$$

by taking the norm of a representing divisor. Norms of elements of $E_{C o n_{E / F}(\mathfrak{m})}^{\times}$are elements of $F_{\mathfrak{m}}^{\times}$, so this is well defined.

Theorem. If $E / F$ is finite abelian with modulus $\mathfrak{m}$ then

$$
\operatorname{ker}\left(A_{E / F}\right)=\operatorname{im}\left(N_{E / F}\right)
$$

We say that $E$ is a class field over $F$ with modulus $\mathfrak{m}$ that belongs to the subgroup $H=\operatorname{im}\left(\mathrm{N}_{E / F}\right)=\operatorname{ker}\left(A_{E / F}\right)$ of finite index of $\mathrm{Pic}_{\mathfrak{m}}(F / K)$.

## Existence of Class Fields

2 Number Theory

Theorem.

1. If $H$ is any subgroup of $\operatorname{Pic}_{\mathfrak{m}}(F / K)$ of finite index, then there is a class field $E$ over $F$ with modulus $\mathfrak{m}$ that belongs to $H$, and $E$ is uniquely determined up to $F$-isomorphism.
2. The degree of the exact constant field of $E / K$ over $K$ is equal to $\operatorname{deg}(H)$, the minimal positive degree of divisor classes in $H$.

## Computing Ray Class Groups

2 Number Theory

There is an exact sequence of finitely generated abelian groups
$0 \rightarrow K^{\times} \rightarrow \prod_{P}\left(\mathcal{O}_{P} / \mathfrak{m}_{P}^{v_{P}(\mathfrak{m})}\right)^{\times} \rightarrow \operatorname{Pic}_{\mathfrak{m}}(F / K) \rightarrow \operatorname{Pic}(F / K) \rightarrow 0$.

We have:

- Generators and relations can be computed for each object of the sequence other $\mathrm{Pic}_{\mathfrak{m}}(F / K)$.
- Elements of each object can be represented in chosen generators.
- Images and preimages of the maps of the sequence can also be computed.

Then generators and relations of $\mathrm{Pic}_{\mathfrak{m}}(F / K)$ can be computed and elements of $\mathrm{Pic}_{\mathfrak{m}}(F / K)$ can be represented in those generators.

## Computing Class Fields

2 Number Theory

Given $H \leq \operatorname{Pic}_{\mathfrak{m}}(F / K)$ the goal is to compute defining equations for the class field $E$ over $F$ of modulus $\mathfrak{m}$ that belongs to $H$.

Theorem. Suppose $H_{1}, H_{2} \subseteq \operatorname{Pic}_{\mathfrak{m}}(F / K)$ with $H_{1} \cap H_{2}=H$. If $E_{1}$ belongs to $H_{1}$ and $E_{2}$ belongs to $H_{2}$ then $E=E_{1} E_{2}$ belongs to $H$.

We can choose $H_{1}$ and $H_{2}$ such that the index of $H_{1}$ is coprime to $\operatorname{char}(F)$ and the index of $H_{2}$ is a power of $\operatorname{char}(F)$.

## Coprime to Characteristic Case

2 Number Theory

Theorem. Let $F^{\prime} / F$ finite and $E^{\prime}=E F^{\prime}$. Then $E^{\prime}$ is the class field over $F^{\prime}$ with modulus $\mathfrak{m}^{\prime}=\operatorname{Con}_{F^{\prime} / F}(\mathfrak{m})$ that belongs to $H^{\prime}=\mathrm{N}_{F^{\prime} / F}^{-1}(H)$.

Suppose that the index of $H$ is coprime to $\operatorname{char}(F)$ and let $n$ denote the exponent of $\mathrm{Pic}_{\mathfrak{m}}(F / K) / H$.

Let $F^{\prime}=F\left(\mu_{n}\right)$.
Theorem. Every abelian extension of $F^{\prime}$ of exponent $n$ is a Kummer extension, is thus obtained by adjoining $n$-th roots of suitable Kummer elements of $F^{\prime}$ to $F^{\prime}$.

This leads to a rather explicit representation of $E^{\prime}$.

## Coprime to Characteristic Case

Then it is known and can be done:

- Kummer elements $f_{i}$ can be computed for the class field $G$ over $F^{\prime}$ of modulus $\mathfrak{m}^{\prime}$ that belongs to $n \mathrm{Pic}_{\mathfrak{m}}\left(F^{\prime} / K\right)$, for example by an $S$-units computation in $F^{\prime}$.
- $H^{\prime}$ is computed as a preimage of maps of abelian groups.
- $E^{\prime}$ is the fixed field of $G$ under $A_{G / F^{\prime}}\left(H^{\prime}\right)$, the Kummer elements $g_{j}$ of $E^{\prime}$ are accordingly computed as products of the $f_{i}$ using a generalised Tate-Lichtenbaum pairing.
- $E^{\prime} / F$ is finite abelian with modulus $m$, and $E$ is the fixed field of $E$ under $A_{E^{\prime}}(H)$. Defining equations for $E$ can be computed via explicit Galois theory.


## Power of Characteristic Case

2 Number Theory

Theorem. Every abelian extension of $F^{\prime}$ of exponent $n$, an $m$-th power of char $(F)$, is an Artin-Schreier-Witt extension, is thus obtained by adjoining the division points of A-S-W elements in $W_{m}\left(F^{\prime}\right)$ under the A-S-W operator to $F^{\prime}$.

This leads to a rather explicit but also rather involved representation of $E$. Let $n$ be the exponent of $\mathrm{Pic}_{\mathfrak{m}}(F / K) / H$.

Then it is known and can be done:

- A-S-W elements $f_{i}$ can be computed for the class field $G$ over $F$ of modulus $\mathfrak{m}$ that belongs to $n \mathrm{Pic}_{\mathfrak{m}}(F / K)$, for example by a Riemann-Roch computation in $F$.
- $E$ is the fixed field of $G$ under $A_{G / F}(H)$, the A-S-W elements $g_{j}$ of $E$ are accordingly computed as sums of the $f_{i}$ using a pairing.


## Applications

2 Number Theory

Construction of function fields with many rational places:

- A place $P$ of $F$ is fully split in $E$ if and only if $P \in H$.
- Let $h_{\mathfrak{n}, H}=\# \operatorname{Pic}_{\mathfrak{n}}(F / K) / \phi_{\mathfrak{m}, \mathfrak{n}}(H)$. The genus of $E$ satisfies

$$
\begin{aligned}
\operatorname{deg}(H)\left(g_{E}-1\right)= & h_{\mathfrak{m}, H}\left(g_{F}-1+\frac{\operatorname{deg}(\mathfrak{m})}{2}\right) \\
& -\frac{1}{2} \sum_{P \mid \mathfrak{m}}\left(\sum_{k=1}^{v_{P}(\mathfrak{m})} h_{\mathfrak{m}-k P, H}\right) \operatorname{deg}(P) .
\end{aligned}
$$

Construction of Drinfeld modules:

- Is defined by coefficients which are elements of a specific class field.
- The coefficients satisfy various relations.
- Use those relations to solve for the coefficients over the class field.

2 Number
Theory

## Class Groups

Mathematical
Background
Computing in the Class Group
Computing the
Class Group

# Zeta functions and $L$-series 

Applications
Class Fields
Mathematical
Background
Computing Ray Class Groups
Computing Class
Fields
Applications
Zeta functions and L-series
Mathematical
Background
Computing
L-series
Applications

Third Part

## Motivation

2 Number Theory

Study zero sets of polynomial equations over various fields

- Example: $\left\{(x, y) \in K^{2} \mid x^{2}+y^{2}=1\right\}$
- Over finite fields: Count solutions!

Algebraic curves: Polynomial equations have one free variable, the other variables are algebraically dependent.

We will again consider function fields $F / \mathbb{F}_{q}$ over the exact constant field $\mathbb{F}_{q}$ instead of curves. Write $N_{d}$ for the places of degree one of $F / \mathbb{F}_{q^{d}}$.

The zeta function of $F / K$ is

$$
\begin{aligned}
\zeta_{F / K}(t) & =\exp \left(\sum_{d=1}^{\infty} N_{d} \cdot \frac{t^{d}}{d}\right) \\
& =\prod_{P} \frac{1}{1-t^{\operatorname{deg}(P)}}=\sum_{D \geq 0} t^{\operatorname{deg}(D)} .
\end{aligned}
$$

## Frobenius Operation

2 Number Theory

There is $L_{F / K}(t) \in \mathbb{Z}[t]$ with $\operatorname{deg}\left(L_{F / K}(t)\right)=2 g$ and

$$
\zeta_{F / K}(t)=\frac{L_{F / K}(t)}{(1-t)(1-q t)}
$$

This is called the $L$-polynomial of $F / K$.
Moreover, there are $\mathbb{Q}_{\ell}$-vector spaces $V_{\ell}$ and $\operatorname{Frob}_{q, \ell} \in \operatorname{Aut}\left(V_{\ell}\right)$ such that

$$
L_{F / K}(t)=\operatorname{det}\left(\mathrm{id}-\operatorname{Frob}_{q, \ell} \cdot t \mid V_{\ell}\right)
$$

## Computation of Zeta functions

Possible applications:

- "Cryptography"
- Distribution of the eigenvalues of Frobenius
- ...

Complexity of $\ell$-adic methods:

- Exponential in $g$ and polynomial in $\log (q)$,
- impractical for $g \geq 3$.

Complexity of $p$-adic methods:

- Mostly $O^{\sim}\left(p^{1} g^{4} n^{3}\right)$ or $O^{\sim}\left(p^{1} g^{5} n^{3}\right)$ with $n=\log _{p}(q)$.
- Random $q=2, g=350$ hyperelliptic curve in 3 days.


## Galois and Abelian Extensions

Let $E / F$ denote a finite Galois extension with Galois group $G$ such that $K$ is the exact constant field of $E$.

The associated product formula for $\zeta_{E / K}(t)$ is

$$
\zeta_{E / K}(t)=\prod_{\chi} L(E / F, \chi, t)^{\chi(1)}
$$

where $\chi$ runs over the irreducible characters of $G$ and $L(E / F, \chi, t)$ will be defined later (for $G$ abelian).

Can the product be computed more efficiently for large $g_{E}$ ?
If $E / F$ is abelian then $E$ is a class field over $F$ belonging to some $H$ and the factors of the product can be described in terms of $H$ !

2 Number Theory

## Characters and L-series

2 Number Theory

A character $\chi$ modulo $\mathfrak{m}$ is a homomorphism

$$
\chi: \operatorname{Pic}_{\mathfrak{m}}(F / K) \rightarrow \mathbb{C}^{\times}
$$

of finite order. The conductor $\mathfrak{f}(\chi)$ of $\chi$ is $\mathfrak{f}(\operatorname{ker}(\chi))$.
The character sum $N_{d}(\chi)$ of degree $d$ is

$$
N_{d}(\chi)=\sum_{\operatorname{deg}(P) \mid d, P \not \subset \mathfrak{f}(\chi)} \operatorname{deg}(P) \cdot \chi([P])^{d / \operatorname{deg}(P)} .
$$

The L-series $L(\chi, t)=L(E / F, \chi, t)$ of $\chi$ with $\operatorname{ker}(\chi) \supseteq H$ is

$$
L(\chi, t)=\exp \left(\sum_{d=1}^{\infty} N_{d}(\chi) \cdot t^{d} / d\right)
$$

We have $\zeta_{F / K}(t)=L(\chi, t)$ for $\chi=\mathrm{id}$.

2 Number Theory

## L-series

Theorem. Assume $\operatorname{ker}(\chi) \neq \operatorname{Pic}_{\mathfrak{m}}(F / K)$. Then

$$
L(\chi, t)=\prod_{i=1}^{2 g-2+\operatorname{deg}(f(\chi))}\left(1-\omega_{i}(\chi) t\right)
$$

with $\left|\omega_{i}(\chi)\right|=q^{1 / 2}$ and $\zeta$ primitive $\operatorname{ord}(\chi)$-th root of unity, and

$$
L(\chi, t)=\varepsilon(\chi) \cdot q^{g-1+\operatorname{deg}(f(\chi)) / 2} \cdot t^{2 g-2+\operatorname{deg}(f(\chi))} \cdot L\left(\bar{\chi}, \frac{1}{q t}\right)
$$

with $\varepsilon(\chi) \in q^{-\operatorname{deg}(f(\chi)) / 2} \mathbb{Z}[\zeta]$ and $|\varepsilon(\chi)|=1$. Furthermore,

$$
\begin{aligned}
\zeta_{E / K}(t) & =\frac{L_{E / K}(t)}{(1-t)(1-q t)} \\
& =\frac{L_{E / K}(t) \cdot \prod_{\operatorname{Pic}_{\mathfrak{m}}(F / K) \supseteq \operatorname{ker}(\chi) \supseteq H} L(\chi, t)}{(1-t)(1-q t)}
\end{aligned}
$$

## Computing one L-series

2 Number Theory

Let $L(\chi, t)=\sum_{i=0}^{2 g-2+\operatorname{deg} f(\chi)} a_{i} t^{i}$ with $a_{i} \in \mathbb{Z}[\zeta]$ and $a_{0}=1$.

1. The coefficients $a_{1}, \ldots, a_{m}$ can be computed from $N_{1}(\chi), \ldots, N_{m}(\chi)$ by the definition of $L(\chi, t)$ :

$$
L(\chi, t)=\sum_{i=0}^{m} a_{i} t^{i} \equiv \exp \left(\sum_{d=1}^{m} N_{d}(\chi) \cdot t^{d} / d\right) \bmod t^{m+1}
$$

2. The character sums $N_{1}(\chi), \ldots, N_{m}(\chi)$ can be computed from their definition

$$
N_{d}(\chi)=\sum_{\operatorname{deg}(P) \mid d, P \not \subset f(\chi)} \operatorname{deg}(P) \cdot \chi([P])^{d / \operatorname{deg}(P)}
$$

by enumerating all places $P$ up to degree $m$ with $P \not \leq \mathfrak{f}(\chi)$.

## Computing one L-series

2 Number Theory
3. Compute characters $\chi$ modulo $\mathfrak{m}$ with $\operatorname{ker}(\chi) \supseteq H$ :

- Use representations of $\operatorname{Pic}_{\mathfrak{m}}(F / K), H$ and $\operatorname{Pic}_{\mathfrak{m}}(F / K) / H$ in terms of generators and relations.
- Define $\chi$ on generators of $\operatorname{Pic}_{\mathfrak{m}}(F / K) / H$ and pull back to $\mathrm{Pic}_{\mathfrak{m}}(F / K)$.
- Compute $\operatorname{ker}(\chi) \supseteq H$ and $\mathfrak{f}(\chi)=\mathfrak{f}(\operatorname{ker}(\chi))$.
- Write $P$ in the generators of $\operatorname{Pic}_{\mathfrak{f}(\chi)}(F / K)$ to obtain $\chi([P])$.

4. Due to the functional equation there is some redundancy between the coefficients of $L(\chi, t)$. As a consequence it often suffices to take $m$ about half the degree of $L(\chi, t)$.

Best to have a toolbox for finitely generated abelian groups and homomorphisms. Requires algorithms for structure computation of $\operatorname{Pic}_{\mathfrak{m}}(F / K)$ and discrete logarithms in $\mathrm{Pic}_{\mathfrak{m}}(F / K)$.

## Computing the Zeta function

2 Number
Theory

Need to choose one $\zeta$ for all $\chi$ on $\operatorname{Pic}_{\mathfrak{m}}(C)$ with $\operatorname{ker}(\chi) \supseteq H$.
Compute $L_{E / K}(t)$ as product over all $L$-series

$$
L_{E / K}(t)=L_{F / K}(t) \cdot \prod_{\operatorname{Pic}(F / K) \supsetneqq \operatorname{ker}(x) \supseteq H} L(\chi, t) .
$$

Use some optimisations:

- Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$. Then $L(\sigma \circ \chi, t)=L(\chi, t)^{\sigma}$. Use Galois redundancy: Compute system of representatives $R$ for $\mathrm{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$-orbits of $\left(\operatorname{Pic}_{\mathrm{c}_{\mathrm{m}}}(F / K) / H\right)^{*}$. For each $\chi \in R$ compute $L(\chi, t)$ and derive $L(\sigma \circ \chi, t)=L(\chi, t)^{\sigma}$.
- Choose some epimorphism $\psi: \mathbb{Z}[\zeta] \rightarrow \mathbb{Z} / n \mathbb{Z}$ with $n$ large. Compute product over $\mathbb{Z} / n \mathbb{Z}$ and reconstruct coefficients of $L_{E / K}(t)$ from $\mathbb{Z} / n \mathbb{Z}$ to $\mathbb{Z}$ by choosing the representative of smallest absolute value.


## Complexity

2 Number Theory

In the following only very rough estimations.
Input size: $F / K, \mathfrak{m}, H$ polynomial in $\log (q), g, \operatorname{deg}(\mathfrak{m})$.
Output size: $g_{E}^{2} \log (q)$.
Computing one L-series: $q^{2(g+\operatorname{deg}(f(\chi)))}$.
Computing Zeta function:

- L-series product: $g_{E}^{2} \log (q)$.
- Galois redundancy gives big practical, but no asymptotic speed up.

Depending on $H$ have very roughly $\operatorname{deg}(\mathfrak{m}) \lesssim g_{E} \lesssim q^{g+\operatorname{deg}(\mathfrak{m})}$.
So for small $H$ asymptotically optimal!

## Applications

Galois module structure of $\operatorname{Pic}^{0}(E / K)$ :

- Use $L$-series to compute Stickelberger element in the group ring $\mathbb{Z}[G]$
- Derive information about the structure of $\operatorname{Pic}^{0}(E / K)$ via Stickelberger ideal and Kolyvagin derivative classes.
- Derive relations of conjugate elements in $\mathrm{Pic}^{0}(E / K)$ under certain conditions.

This is interesting since no equations for $E / K$ and no expensive class group computation of $\operatorname{Pic}^{0}(E / K)$ needs to be carried out.

1. Show that there is an injective map of sets of $\mathrm{Pic}^{0}(F / K)$ into the set of effective divisors of degree $n$, for any $n \geq n$.
2. Show that $\operatorname{Pic}^{0}(K(x) / K)=0$.
3. Show that $\operatorname{Pic}_{\mathfrak{m}}(F / K) \cong \operatorname{Pic}(F / K)$ if and only if $\mathfrak{m}$ is a prime divisor of degree one.
4. Let $\phi: E_{1} \rightarrow E_{2}$ be a morphism of elliptic curves. Show that $K\left(E_{1}\right)$ is a class field of $\phi^{*}\left(K\left(E_{2}\right)\right)$ belonging to

$$
H=\langle\infty\rangle \times\left\{(\phi(P))-(\infty) \mid P \in E_{1}(K)\right\}
$$

5. If $\chi \neq 1$ is a character for $\mathbb{F}_{q}(x) / \mathbb{F}_{q}$ then $\operatorname{deg}(f(\chi)) \geq 2$.
6. Let $F=\mathbb{F}_{7}(x, y)$ with $y^{2}=x^{5}+2 x+1$. Compute the genus and number of rational places of the class field of $F / K$ with modulus $\mathfrak{m}=2 \infty+3(x, y-1)$ and subgroup $H$ generated by $[(x, y+1)]_{\mathfrak{m}}$.
