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Notation

Consider complete regular curves C over a field K . We can
then equivalently work with F = K (C ) only.

Notation:

I Group of divisors Div(F/K ).

I Subset of divisors of degree d : Divd(F/K ).

I Subgroup of principal divisors of Princ(F/K ).

I Class group or Picard group: Pic(F/K ).

I Subgroup of class of degree d : Picd(F/K ).

By definition,

Pic(F/K ) = Div(F/K )/Princ(F/K ),

Pic0(F/K ) = Div0(F/K )/Princ(F/K ).
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Some Facts

We have
Pic(F/K ) = Pic0(F/K )⊕ 〈A〉,

where A is a divisor of F/K with minimal positive degree.

If K is a finite field are algebraically closed then deg(A) = 1. In
the latter case A can be chosen to be a prime divisor.

If K is finitely generated over its prime field then Pic0(F/K ) is
finitely generated.

If K is a finite field then Pic0(F/K ) is finite. Then usually

#Pic0(F/K ) ≈ (#K )g .
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Computing in the Class Group

Representation of divisors:
I Divisors can be represented as a sum of places with

integral coefficients, or as a pair of fractional ideals.
I Addition of divisors either by addition of coefficient vectors

or multiplication of ideals.
I Equality by coefficientwise comparison or comparison of

Hermite normal forms.

Representation of divisor classes:
I By divisors, which can be “suitably” chosen, for example

reduced divisors.
I Comparison via unique divisor class representatives, if they

can be computed, or by the test

deg(D) = deg(E ) and L(D − E ) 6= 0.

I This is usally efficient (polynomial time) in terms of
operations in K .
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Computing in the Class Group

Reduction of divisors:

I Fix a divisor A of positive degree.

I For every D there is D̃ ≥ 0 and f ∈ F× such that

D = D̃ − rA + div(f )

and deg(D̃) ≤ g + deg(A)− 1.

I If A is a prime divisor of degree one and r is minimal
then D̃ is uniquely determined.

Class representatives:

I Thus [D] = [D̃ − rA] for every divisor class.

I If A is a prime divisor of degree one then D̃ − rA can be
uniquely chosen.
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Computing in the Class Group

Reduction of divisors:

I The reduced divisor D̃ can be computed by an iterative
double-and-add method such that the runtime is
polynomial in g , deg(A) and the length of D.

I Moreover, f is computed as a product of powers of
elements of F and has length polynomial in g , deg(A) and
the length of D.
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Computing in the Class Group

These ideas can be optimised, for example by precomputations,
and worked out in great detail.

A (biased) selection of results:

I Cantor: If F/K is hyperelliptic then operations in
Pic0(F/K ) can be reduced to fast polynomial arithmetic
in degree O(g), so the runtime is O∼(g).

I Makdisi: If F/K is arbitrary then operations in Pic0(F/K )
can be reduced to fast matrix arithmetic in dimension
O(g), so the runtime is O∼(gω).

I Hess-Junge: If F/K has a rational subfield of index n,
where n = O(g) is always possible, then operations in
Pic0(F/K ) can be reduced to fast polynomial matrix
arithmetic in dimension O(n) and degree O(g/n), so the
runtime is O∼(nω(g/n)).
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Computing the Class Group

We assume that K is finite! Write q = #K .

Have Pic0(F/K ) ∼= Z/c1Z× · · · × Z/c2gZ. with ci |ci+1.

Goal:

I Compute the ci .

I Compute images and preimages under a fixed isomorphism

φ : Pic(F/K )→ Z⊕ Z/c1Z× · · · × Z/c2gZ.

Denote by A a fixed divisor of degree one that maps under φ to
the first cyclic factor of the codomain of φ.
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Computing the Class Group

Algorithms that work for any finite abelian group G :

I Classic runtime O((#G )1/2).

I Improvements often lead to O((#G )1/3).

I So here roughly O∼(qg/2) or O∼(qg/3).

Algorithms that use G = Pic0(F/K ) usually employ an index
calculus strategy:

I If q is small and g is large, the (heuristic) runtime is

q(c+o(1))g1/2 log(g)1/2 , and q(d+o(1))g1/3 log(g)2/3 (†) in
special families.

I If q is large and g ≥ 2 fixed, then O∼(q2−2/g ) (†).

(†): This is for discrete logarithms, so restrictions may apply.
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Index Calculus

Setup:

I Let S denote the set of places of F/K of degree ≤ r ,
called factor basis.

I Let [D1], . . . , [Ds ] denote generators of Pic0/F/K ).

Relation search:

I Choose random λi and compute [D̃ − lA] =
∑

i λi [Di ]
with D̃ reduced.

I Factor D̃ over S , if possible and obtain∑
i

λi [Di ] = [D̃ − lA] = −l [A] +
∑
P∈S

nP [P].

I Store λi and nP as rows of a matrix and repeat.
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Index Calculus

Linear algebra:

I If matrix has full rank and sufficiently more rows than
columns use a Hermite normal form computation to derive
relations between the generators [Di ].

I Use a Smith normal form computation to derive
c1, . . . , c2g from those relations.

Why does it work?

I There is a good upper bound on r .

I The class number can be efficiently approximated and
checked against the computed c1, . . . , c2g .

I There is a reasonable good (heuristic) probability that
enough relations are obtained.
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Index Calculus

Let Nm denote the number of places of degree one in the
constant field extension of F of degree m.

Theorem. Suppose Nr > (g − 1)2qr/2. Then Pic(F/K ) is
generated by the places of degree ≤ r and the places
in supp(A).

Theorem. Let h = #Pic0(F/K ). Then∣∣∣∣ log

(
h

qg

)
−

t∑
m=1

q−m

m

(
Nm − qm − 1

) ∣∣∣∣ ≤ 2g

q1/2 − 1
· q
−t/2

t + 1
.

Since c1 . . . c2g is an integral multiple of h an approximation of
log(h/qg ) up to an error of log(2)/3 is sufficient.
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Some Applications

From the relations of the [Di ] it is easy to compute generators
of Pic0(F/K ) corresponding to the cyclic generators of the
codomain of φ. We can thus also compute preimages under φ
efficiently.

Images φ([D]) are computed by adding [D − deg(D)A] to the
[Di ] and searching for relations. The runtime is then basically
the same like that for computing the c1, . . . , c2g .

This can directly be used to compute for an arbitrary S

I S-units U(S) = {f ∈ F× | supp(div(f )) ⊆ S} and

I S-class groups Div(F/K )/(〈S〉+ Princ(F/K )).
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Notation

Notation:

I Let m denote an effective divisor, called modulus.

I Divm(F/K ) group of divisors coprime to m.

I F×m = {f ∈ F× | vP(f − 1) ≥ vP(m) for all P} group of
elements congruent to one modulo m.

I Princm(F/K ) = {div(f ) | f ∈ F×m }, the ray modulo m.

I Picm(F/K ) = Divm(F/K ) /Princm(F/K ), the ray class
group modulo m.

I φm,n : Picm(F/K )→ Picn(F/K ), [D]m 7→ [D]n for n ≥ m.

We have Princgcd(m,n)(F/K ) = Princm(F/K ) + Princn(F/K ).

The φm,n are epimorphisms.
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Artin Map

Let E/F be a finite abelian extension. Let P be place of F/K
and write N(P) = #OP/mP = qdeg(P).

If P is unramified in E/F then there is a uniquely determined
σP ∈ Gal(E/F ) satisfying

σP(x) ≡ xN(P) mod mQ

for all places Q of E/K above P and all x ∈ OQ .

Suppose E/F is unramified outside supp(m). The Artin map is
defined as

AE/F : Divm(F/K )→ Gal(E/F ), D 7→
∏
P

σ
vP(D)
P .
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Some Properties of the Artin Map

Theorem.

I The Artin map is surjective.

I If the multiplicities of m are large enough then

Princm(F/K ) ⊆ ker(AE/F ).

Any m like in the theorem is called a modulus of E/F . There is
a smallest modulus f(E/F ) of E/F , called conductor of E/F .
Every place in m is ramified in E/F .

If m is a modulus of E/F then regard

AE/F : Picm(F/K )→ Gal(E/F ).

Thus if H = ker(AE/F ) then H has finite index in Picm(F/K )
and

Gal(E/F ) ∼= Picm(F/K )/H.
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Norm Map and Class Fields

Define
NE/F : PicConE/F (m)(E/K )→ Picm(F/K )

by taking the norm of a representing divisor. Norms of elements
of E×ConE/F (m) are elements of F×m , so this is well defined.

Theorem. If E/F is finite abelian with modulus m then

ker(AE/F ) = im(NE/F ).

We say that E is a class field over F with modulus m that
belongs to the subgroup H = im(NE/F ) = ker(AE/F ) of finite
index of Picm(F/K ).
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Existence of Class Fields

Theorem.

1. If H is any subgroup of Picm(F/K ) of finite index, then
there is a class field E over F with modulus m that belongs
to H, and E is uniquely determined up to F -isomorphism.

2. The degree of the exact constant field of E/K over K is
equal to deg(H), the minimal positive degree of divisor
classes in H.
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Computing Ray Class Groups

There is an exact sequence of finitely generated abelian groups

0→ K× →
∏
P

(OP/m
vP(m)
P )× → Picm(F/K )→ Pic(F/K )→ 0.

We have:

I Generators and relations can be computed for each object
of the sequence other Picm(F/K ).

I Elements of each object can be represented in chosen
generators.

I Images and preimages of the maps of the sequence can
also be computed.

Then generators and relations of Picm(F/K ) can be computed
and elements of Picm(F/K ) can be represented in those
generators.
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Computing Class Fields

Given H ≤ Picm(F/K ) the goal is to compute defining equa-
tions for the class field E over F of modulus m that belongs
to H.

Theorem. Suppose H1,H2 ⊆ Picm(F/K ) with H1 ∩ H2 = H.
If E1 belongs to H1 and E2 belongs to H2 then E = E1E2

belongs to H.

We can choose H1 and H2 such that the index of H1 is coprime
to char(F ) and the index of H2 is a power of char(F ).
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Coprime to Characteristic Case

Theorem. Let F ′/F finite and E ′ = EF ′. Then E ′ is the class
field over F ′ with modulus m′ = ConF ′/F (m) that belongs

to H ′ = N−1F ′/F (H).

Suppose that the index of H is coprime to char(F ) and let n
denote the exponent of Picm(F/K )/H.

Let F ′ = F (µn).

Theorem. Every abelian extension of F ′ of exponent n is a
Kummer extension, is thus obtained by adjoining n-th roots of
suitable Kummer elements of F ′ to F ′.

This leads to a rather explicit representation of E ′.
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Coprime to Characteristic Case

Then it is known and can be done:

I Kummer elements fi can be computed for the class field G
over F ′ of modulus m′ that belongs to nPicm(F ′/K ), for
example by an S-units computation in F ′.

I H ′ is computed as a preimage of maps of abelian groups.

I E ′ is the fixed field of G under AG/F ′(H ′), the Kummer
elements gj of E ′ are accordingly computed as products of
the fi using a generalised Tate-Lichtenbaum pairing.

I E ′/F is finite abelian with modulus m, and E is the fixed
field of E under AE ′F (H). Defining equations for E can be
computed via explicit Galois theory.
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Power of Characteristic Case

Theorem. Every abelian extension of F ′ of exponent n, an
m-th power of char(F ), is an Artin-Schreier-Witt extension, is
thus obtained by adjoining the division points of A-S-W
elements in Wm(F ′) under the A-S-W operator to F ′.

This leads to a rather explicit but also rather involved
representation of E . Let n be the exponent of Picm(F/K )/H.

Then it is known and can be done:

I A-S-W elements fi can be computed for the class field G
over F of modulus m that belongs to nPicm(F/K ), for
example by a Riemann-Roch computation in F .

I E is the fixed field of G under AG/F (H), the A-S-W
elements gj of E are accordingly computed as sums of the
fi using a pairing.
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Applications

Construction of function fields with many rational places:
I A place P of F is fully split in E if and only if P ∈ H.
I Let hn,H = #Picn(F/K )/φm,n(H). The genus of E

satisfies

deg(H)(gE − 1) = hm,H

(
gF − 1 +

deg(m)

2

)

− 1

2

∑
P|m

vP(m)∑
k=1

hm−kP,H

 deg(P).

Construction of Drinfeld modules:
I Is defined by coefficients which are elements of a specific

class field.
I The coefficients satisfy various relations.
I Use those relations to solve for the coefficients over the

class field.
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Motivation

Study zero sets of polynomial equations over various fields
I Example: {(x , y) ∈ K 2 | x2 + y2 = 1}
I Over finite fields: Count solutions!

Algebraic curves: Polynomial equations have one free variable,
the other variables are algebraically dependent.

We will again consider function fields F/Fq over the exact
constant field Fq instead of curves. Write Nd for the places of
degree one of F/Fqd .

The zeta function of F/K is

ζF/K (t) = exp

( ∞∑
d=1

Nd ·
td

d

)

=
∏
P

1

1− tdeg(P)
=
∑
D≥0

tdeg(D).

28 / 40



Algorithmics of
Function Fields

2 Number
Theory

Class Groups

Mathematical
Background

Computing in
the Class Group

Computing the
Class Group

Applications

Class Fields

Mathematical
Background

Computing Ray
Class Groups

Computing Class
Fields

Applications

Zeta functions
and L-series

Mathematical
Background

Computing
L-series

Applications

Exercises

Frobenius Operation

There is LF/K (t) ∈ Z[t] with deg(LF/K (t)) = 2g and

ζF/K (t) =
LF/K (t)

(1− t)(1− qt)
.

This is called the L-polynomial of F/K .

Moreover, there are Q`-vector spaces V` and Frobq,` ∈ Aut(V`)
such that

LF/K (t) = det (id− Frobq,` ·t |V`) .
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Computation of Zeta functions

Possible applications:

I “Cryptography”

I Distribution of the eigenvalues of Frobenius

I ...

Complexity of `-adic methods:

I Exponential in g and polynomial in log(q),

I impractical for g ≥ 3.

Complexity of p-adic methods:

I Mostly O∼(p1g4n3) or O∼(p1g5n3) with n = logp(q).

I Random q = 2, g = 350 hyperelliptic curve in 3 days.
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Galois and Abelian Extensions

Let E/F denote a finite Galois extension with Galois group G
such that K is the exact constant field of E .

The associated product formula for ζE/K (t) is

ζE/K (t) =
∏
χ

L(E/F , χ, t)χ(1),

where χ runs over the irreducible characters of G and
L(E/F , χ, t) will be defined later (for G abelian).

Can the product be computed more efficiently for large gE?

If E/F is abelian then E is a class field over F belonging to
some H and the factors of the product can be described in
terms of H!
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Ray Class Groups

We have already met ray class groups. Here are some (more)
properties.

For a subgroup H of Picm(F/K ) of finite index there is a
unique minimal f(H) ≤ m with

Picf(H)(F/K )/φm,f(H)(H) ∼= Picm(F/K )/H.

The divisor f(H) is the conductor of H. It is equal to the
conductor of the class field E over F belonging to H.

Picm(F/K ) ∼= Pic0m(F/K )⊕ Z.

#Pic0m(F/K ) =
#Pic0(F/K )·

∏s
i=1(qdeg(P) − 1)qdeg(P)(vP(m)−1)

q − 1
.
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Characters and L-series

A character χ modulo m is a homomorphism

χ : Picm(F/K )→ C×

of finite order. The conductor f(χ) of χ is f(ker(χ)).

The character sum Nd(χ) of degree d is

Nd(χ) =
∑

deg(P)|d ,P 6≤f(χ)

deg(P) · χ([P])d/ deg(P).

The L-series L(χ, t) = L(E/F , χ, t) of χ with ker(χ) ⊇ H is

L(χ, t) = exp

( ∞∑
d=1

Nd(χ) · td/d

)
.

We have ζF/K (t) = L(χ, t) for χ = id.
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L-series

Theorem. Assume ker(χ) 6= Picm(F/K ). Then

L(χ, t) =

2g−2+deg(f(χ))∏
i=1

(1− ωi (χ)t)

with |ωi (χ)| = q1/2 and ζ primitive ord(χ)-th root of unity, and

L(χ, t) = ε(χ) · qg−1+deg(f(χ))/2 · t2g−2+deg(f(χ)) · L(χ̄,
1

qt
)

with ε(χ) ∈ q− deg(f(χ))/2Z[ζ] and |ε(χ)| = 1. Furthermore,

ζE/K (t) =
LE/K (t)

(1− t)(1− qt)

=
LE/K (t) ·

∏
Picm(F/K))ker(χ)⊇H L(χ, t)

(1− t)(1− qt)
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Computing one L-series

Let L(χ, t) =
∑2g−2+deg f(χ)

i=0 ai t
i with ai ∈ Z[ζ] and a0 = 1.

1. The coefficients a1, . . . , am can be computed from
N1(χ), . . . ,Nm(χ) by the definition of L(χ, t):

L(χ, t) =
m∑
i=0

ai t
i ≡ exp

(
m∑

d=1

Nd(χ) · td/d

)
mod tm+1.

2. The character sums N1(χ), . . . ,Nm(χ) can be computed
from their definition

Nd(χ) =
∑

deg(P)|d ,P 6≤f(χ)

deg(P) · χ([P])d/ deg(P)

by enumerating all places P up to degree m with P 6≤ f(χ).
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Computing one L-series

3. Compute characters χ modulo m with ker(χ) ⊇ H:
I Use representations of Picm(F/K ), H and Picm(F/K )/H

in terms of generators and relations.
I Define χ on generators of Picm(F/K )/H and pull back to

Picm(F/K ).
I Compute ker(χ) ⊇ H and f(χ) = f(ker(χ)).
I Write P in the generators of Picf(χ)(F/K ) to

obtain χ([P]).

4. Due to the functional equation there is some redundancy
between the coefficients of L(χ, t). As a consequence it often
suffices to take m about half the degree of L(χ, t).

Best to have a toolbox for finitely generated abelian groups and
homomorphisms. Requires algorithms for structure computa-
tion of Picm(F/K ) and discrete logarithms in Picm(F/K ).
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Computing the Zeta function

Need to choose one ζ for all χ on Picm(C ) with ker(χ) ⊇ H.

Compute LE/K (t) as product over all L-series

LE/K (t) = LF/K (t) ·
∏

Picm(F/K))ker(χ)⊇H

L(χ, t).

Use some optimisations:

I Let σ ∈ Gal(Q(ζ)/Q). Then L(σ ◦ χ, t) = L(χ, t)σ. Use
Galois redundancy: Compute system of representatives R
for Gal(Q(ζ)/Q)-orbits of (Picm(F/K )/H)∗. For each
χ ∈ R compute L(χ, t) and derive L(σ ◦ χ, t) = L(χ, t)σ.

I Choose some epimorphism ψ : Z[ζ]→ Z/nZ with n large.
Compute product over Z/nZ and reconstruct coefficients
of LE/K (t) from Z/nZ to Z by choosing the representative
of smallest absolute value.
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Complexity

In the following only very rough estimations.

Input size: F/K ,m,H polynomial in log(q), g , deg(m).
Output size: g2

E log(q).

Computing one L-series: q2(g+deg(f(χ))).

Computing Zeta function:

I L-series product: g2
E log(q).

I Galois redundancy gives big practical, but no asymptotic
speed up.

Depending on H have very roughly deg(m) / gE / qg+deg(m).

So for small H asymptotically optimal!
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Applications

Galois module structure of Pic0(E/K ):

I Use L-series to compute Stickelberger element in the
group ring Z[G ]

I Derive information about the structure of Pic0(E/K ) via
Stickelberger ideal and Kolyvagin derivative classes.

I Derive relations of conjugate elements in Pic0(E/K ) under
certain conditions.

This is interesting since no equations for E/K and no expensive
class group computation of Pic0(E/K ) needs to be carried out.

39 / 40



Algorithmics of
Function Fields

2 Number
Theory

Class Groups

Mathematical
Background

Computing in
the Class Group

Computing the
Class Group

Applications

Class Fields

Mathematical
Background

Computing Ray
Class Groups

Computing Class
Fields

Applications

Zeta functions
and L-series

Mathematical
Background

Computing
L-series

Applications

Exercises

Excercises

1. Show that there is an injective map of sets of Pic0(F/K ) into the
set of effective divisors of degree n, for any n ≥ n.

2. Show that Pic0(K (x)/K ) = 0.

3. Show that Picm(F/K ) ∼= Pic(F/K ) if and only if m is a prime
divisor of degree one.

4. Let φ : E1 → E2 be a morphism of elliptic curves. Show that
K (E1) is a class field of φ∗(K (E2)) belonging to

H = 〈∞〉 × {(φ(P))− (∞) |P ∈ E1(K )}.

5. If χ 6= 1 is a character for Fq(x)/Fq then deg(f(χ)) ≥ 2.

6. Let F = F7(x , y) with y2 = x5 + 2x + 1. Compute the genus and
number of rational places of the class field of F/K with modulus
m = 2∞+ 3(x , y − 1) and subgroup H generated by [(x , y + 1)]m.
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