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• E : elliptic curve defined over Fq finite field,

+: addition law on E .

• n odd prime number, (E(Fqn ),+) group of points

of E with coordinates in Fqn .

• Frobenius endomorphism ϕ : E(Fqn ) −→ E(Fqn ),

(X ,Y ) 7→ (X q,Y q), P∞ 7→ P∞.

Trace-zero subgroup of E (Fqn)

Tn = {P ∈ E (Fqn) : P + ϕ(P) + · · ·ϕn−1(P) = P∞}

Trace-zero subgroups are interesting for cryptographic applications



P ∈ T3

!P : y = ax + b, a, b ∈ Fq
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Aims

• Optimal representations of points of Tn :

represent P ∈ Tn with the least possible

number of Fq-coordinates.

• Find algorithms for scalar multiplication in

the optimal representation.

{P, ϕ(P), ϕ2(P)} ←→ (a, b) ∈ F2
q representation of P
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Aims

• Optimal representations of points of Tn :

represent P ∈ Tn with the least possible

number of Fq-coordinates.

• Find algorithms for scalar multiplication in

the optimal representation.

{P, ϕ(P), ϕ2(P)} ←− (a, b) ∈ F2
q representation of P

↓ scalar multiplication of points ↓ scalar multiplications of lines?

{kP, ϕ(kP), ϕ2(kP)} −→ (ak , bk) ∈ F2
q representation of kP

Note : Montgomery’s ladder performs scalar multiplication of vertical lines...



Ben

Ben Breen

Dartmouth College

UNCG Summer School in Computational Number theory

May 30, 2016

Dartmouth College Ben Breen



Ben

Current interests

Algebraic Number Theory, Algebraic Geometry, Arithmetic
Geometry

Projects

1 Hilbert modular forms
Working on developing a fast multiplication algorithm for
Hilbert modular forms. Hopefully it will be implemented for
both SAGE and Magma

2 Heuristics for Narrow Class Groups
I’m investigating the narrow class group in quartic fields using
Bhargava’s parameterization of quartic rings.

Dartmouth College Ben Breen
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Past work

Wild ramification in a family of low-degree extensions arising
from iteration

We looked at wild ramification in a family of iterated
extensions. For integer values of c, we consider the splitting
field of (x2 + c)2 + c , the second iterate of x2 + c . We give
complete information on the factorization of the ideal (2) as c
varies, and find a surprisingly complicated dependence of this
factorization on the parameter c .

Joint work Rafe Jones, Tommy Occhipiniti, and Michelle Yuen

Dartmouth College Ben Breen
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Research Interests

Research Interests: Number Theory for Cryptography

Worked on several projects including on the hardness of the
Learning With Errors problem (LWE) over lattices:

Lattice of dimension n:
L(b1, ...,bn) = {∑n

i=1 xibi : xi ∈ Z for 1 ≤ i ≤ n}, with n linearly
independent vectors b1,...,bn are a basis of the lattice.

b1

b2

Figure : Lattice of dimension 2,
The Shortest Vector Problem

Goal of SVP:
find a non zero vector of length
λ(L) = min(‖b‖2 : b ∈ L\{0})
from an arbitrary basis

‖b‖2 =
√∑

i bi
2 is the

euclidean norm.
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Research Interests

The Learning With Errors problem over lattices [Reg05]

I The computational version of LWE:
Given A ∈ Zm×n

q and b = As + e, find s ∈ Zn
q with e gaussian

over Zn
q.

I The decisional version of LWE:
Distinguish (A,b) uniform from (A,As + e mod q), with
A←↩ U(Zm×n

q ), s←↩ U(Zn
q) is secret and e is the gaussian

error.

,A A
s

+ e
m

n

Also worked on other hard problems such as factoring with
Coppersmith’s modifications to the Number Field Sieve.

I love using mathematics for information security in general.
3 / 3
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Let d be a squarefree positive integer and Od be the ring of
integers of Q(

√
d).

In my research for my thesis I am working towards computing and
tabulating congruence subgroups of

PSL2(Od) = SL2(Od)/{±1}

(Hilbert modular group) of level n ∈ Z using Magma.

Lance Everhart My Research Interest
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Currently working on ways to compute the representatives of fixed
point groups of a general PSL2(Od) using a fundamental domain.

Lance Everhart My Research Interest
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Some interesting past work of mine:

Multi-user Dynamic Proofs of Data Possession using Trusted
Hardware

Crytography and programming
Published by CODASPY

3D engine for possible future virtual tours of UNCG

Calculus application
Linear algebra based engine
Curve fitting with B-spline curves

Lance Everhart My Research Interest
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Thank You

Lance Everhart My Research Interest



Fractional Derivatives of Hurwitz Zeta Functions

Ricky Farr Joint Work With Sebastian Pauli

University of North Carolina at Greensboro

30 May 2016
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Hurwitz Zeta Functions And Their Derivatives

Fractional Derivative of Hurwitz Zeta Functions

Let s = σ + ti where σ > 1, 0 < a ≤ 1, and α > 0

ζ(α)(s, a) = (−1)α
∞∑

n=1

logα(n + a)

(n + a)s
.

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 30 May 2016 2 / 3



Generalized Non-Integer Stieltjes Constants

Definition

The non-integral generalized Stieltjes Constants is the sequence of
numbers {γα+n(a)}∞n=0 with the property

∞∑

n=0

logα(n + a)

(n + a)s
=

Γ(α + 1)

(s − 1)α+1
+

∞∑

n=0

(−1)nγα+n(a)

n!
(s − 1)n, s 6= 1

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 30 May 2016 3 / 3
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Bounding the field extension necessary to achieve
semistable reduction

Situation
Let C be a curve over Q. After a suitable transformation, we can
consider C as a curve over Z. We may be interested in what
happens when we consider these equations modulo p.

Example

C : XY − 2 = 0

We want to find a curve C ′ that is isomorphic to C over Q and has
”nice” properties modulo p.
For our example: C ′ : X ′Y ′ − 1 = 0 is smooth for all p.

Semistable reduction theorem (Deligne-Mumford)

Let C be a smooth, projective curve connected curve over K of
genus g ≥ 2. Then there exists a finite field extension [L : K ] such
that CL has a semi-stable model over OL.



Relative version:
Let f : X → Y be a finite map between curves over a field K .
Then there exists a finite field extension [L : K ] such that f lifts to
a finite morphism f̃ : X → Y between two semistable models of CL.

My goal:

Finding an explicit bound for this field extension in terms of the
original cover. Currently trying to see if it is possible to write this
bound purely in terms of the genera of X and Y .

Current research topic (just started):

Finding explicit curves whose endomorphism algebra is isomorphic
to a quaternion algebra.
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Current Research - Coarse Spaces

Definition

a) The pair (X , E) is a coarse space if X is a set and E is a
collection of subsets of X ⇥ X , called entourages satisfying,

1) A subset of an entourage is an entourage
2) A finite union of entourages is an entourage
3) The diagonal � = {(x , x) | x 2 x}
4) If E 2 E , then E�1 = {(y , x) | (x , y) 2 E}
5) If E1, E2 2 E , then

E1 � E2 = {(x , z) | (x , y) 2 E1 and (y , z) 2 E2}
b) Let (X , E) be a coarse space. Let Y be a family of coarse

subspaces of Y. Let L 2 E . We say X admits an an

L-decomposition over Y, denoted X
L! Y if

X = X 0 [ X 1 where X i = tLX
i
j

where X i
j 2 Y and X i

j 6= X i
j0 implies X i

j ⇥ X i
j0 \ L = ;.

c) A coarse family Y is uniformly bounded if [Y2YY ⇥ Y is an
entourage.



Austin Lawson

Decomposition Complexity

Definition

a) A coarse space X is said to have straight finite coarse
decomposition complexity (SFCDC) if for any sequence of
entourages L1 ⇢ L2 ⇢ · · · there exists a finite sequence of
families Y0, Y1, · · · , Yn of subsets of X with Y0 = X , Yn

uniformly bounded and Yi�1
Li! Yi for 0  i  n � 1.

b) A coarse space (X , E) is said to have coarse property A if for
each " > 0 and for each E 2 E there exists a map
a : X ! `1(X ), x 7! ax such that,

1) kaxk = 1 for all x 2 X
2) (x , y) 2 E implies kax � ayk1 < "
3) There is some S 2 E such that for each x 2 X supp(ax)

⇢ S [x ] = {s 2 X | (s, x) 2 S}.

Conjecture

SFCDC ) coarse property A.
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Research Interests

Research Interests

Hyperelliptic curve algorithms and their implementation (arithmetic,
discrete logarithm, ...), Cryptography in general.

Hyperelliptic curves

A hyperelliptic curve C of genus g over K (g≥1) is an equation of the form

C : v2 + h(u)v = f (u) in K [u, v ]

where degrees of monic polynomials h(u), f (u) ∈ K [u] are at most g,
2g+1 respectively, and there are no solutions (u, v) ∈ K̄ × K̄ which
simultaneously satisfy the curve equation and two partial derivative
equations, 2v + h(u) = 0 and h′(u)v − f ′(u) = 0.

Sumin Leem (Universities of Calgary) Research interests May 30 2016 2 / 3



Research Interests

Jacobian of a Hyperelliptic curve

Jacobian of a Hyperelliptic curve H is

Jac(H) = Div0(H)/Prin(H)

where Div0(H) is degree zero divisors on H and Prin(H) is principal
divisors on H.
NOTE: Jac(H) is an abelian group.

Sumin Leem (Universities of Calgary) Research interests May 30 2016 3 / 3
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Gap Distribution of Primes

Prime Number Theorem

π(x) ∼ x
log x

Average gap ∼ log x
I Small Gap

lim infn(pn+1 − pn).
Hardy-Littlewood prime tuples conjecture.
lim infn(pn+1 − pn) ≤ 70000000 (Zhang, 2013),
lim infn(pn+1 − pn) ≤ 600 (Maynard, 2013).

II Large Gap
G(x) = lim suppn+1≤x(pn+1 − pn).
Granville conjecture G(x) & 2e−γ log2 x .
G(x)� log3 x

log4 x log x (Westzynthius, 1931),

G(x)� log2 x log4 x
(log3 x)2 log x (Erdös & Rankin, 1938),

G(x)� log2 x log4 x
log3 x log x (Ford, Green, Konyagin, Maynard,

Tao, 2014).

Junxian Li Distribution of Primes
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Least Prime in Progression

Fix a positive integer k and let ` be coprime to k . Let p(k , `)
denote the smallest prime equivalent to ` modulo k , and define

P(k) := max(`,k)=1 p(k , `).

Heuristic: lim infk
P(k)

φ(k) log2 k
= 1, lim supk

P(k)
φ(k) log2 k

= 2.

I Upper Bound
Linnik: P(k)� kL, where L > 0 is a fixed constant.
Xylouris: L ≤ 5.18, following a method of Heath-Brown.

II Lower Bound
Pomerance :
P(k) ≥ (eγ + o(1))φ(k) log k log2 k log4 k

(log3 k)2 ,∀k 6∈ Q.
Li, Pratt, Shakan :
P(k)� φ(k) log k log2 k log4 k/ log3 k ,∀k 6∈ Q′ ⊃ Q.

What happens in number fields and function fields ?

Junxian Li Distribution of Primes
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DIVISOR SCALAR MULTIPLICATION
OVER LOW GENUS
HYPERELLIPTIC CURVES

Sebastian Lindner



Background

SETTING: DIVISOR CLASS GROUP

Let C be a hyperelliptic curve of genus g over a finite field K.

# A divisor D is a formal sum of points on C.

# The Divisor Class Group of C is an additive abelian group related to
divisors. In our setting, the divisor class group is isomorphic to the
ideal class group of C.

WHY DO WE CARE: HEC CRYPTOGRAPHY

The most computationally intensive operation in Hyperelliptic Curve Cryp-
tography (HECC) is scalar multiplication of a divisor D,

[n]D � D + D + D + · · · + D , (n times.)

Efficient implementation of HECC relies on the ability to efficiently compute
[n]D.



Research Focus

# Scalar Multiplication (or exponentiation in multiplicative groups)
•We are looking at multibase representations of numbers (base 2 and 3)
to speed up scalar multiplication due to the low weight, i.e.:

57 � 25 + 24 + 23 + 20 vs 57 � 2133 + 2031

# Group Law Operations
• Group law operations (i.e.: doubles and additions) are expressed in
polynomial arithmetic and refined to lower level finite field arithmetic.
•We are working on creating efficient tripling operations to take
advantage of mixed representations of scalars.

# Special Families of Curves
•We are looking at families of curves that exhibit efficiently computable
multiplication by 3 isogenies, reducing the complexity of a triple.
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Numerical Semigroups

- A numerical semigroup S is a subset of ℕ ∪ 0 ,closed under addition and with finite
complement

- The genus is the cardinality of ℕ\S
- Let 𝑛𝑔 be the quantity of numerical semigroups of genus g.

g            𝑛𝑔 𝑛𝑔−1 + 𝑛𝑔−2 𝑛𝑔−1 + 𝑛𝑔−2/𝑛𝑔 𝑛𝑔/𝑛𝑔−1

- 2                    2                         2                                      1                                             2
3                   4                          3                                      0.75                                         2           

- 4                    7                          6                                     0.857143                                 1.75 
- 5                    12                        11                                   0.916667                                 1.71429       
- 6                    23                        19                                    0.826087                                 1.91667                                                               
- 7                    39                         35                                   0.897436                                 1.69565 
- 8                    67                        62                                    0.925373                                 1.71795
- 9                    118                      106                                  0.898305                                 1.76119 
- 10                  204                       185                                 0.906863                                1.72881 
- 20                  37396                   35931                             0.960825                                 1.66471 
- 30                   5646773                5528869                        0.97912                      1.64254 
- 40                   774614284            765791252                    0.98861                          1.63128 
- 50                   101090300128       100460533126             0.99377                                1.62525

lim
𝑔→∞

(𝑛𝑔−1 + ng−2)/𝑛𝑔 = 1       and lim
𝑔→∞

𝑛𝑔/𝑛𝑔−1 = 𝜑 = (1 + 5)/2 (Proved by Alex Zhai 2011)



𝛾-Hyperelliptic Numerical Semigroups

The motivation to study them comes from Weierstrass semigroups at ramified points  of double covering
of curves
Let 𝛾 ≥ 0 be an integer.A numerical semigroup H is called 𝛾-hyperelliptic if the following conditions hold:
1) H has 𝛾 even elements in [2,4𝛾]
2) The (𝛾+1)th positive element of H is 4𝛾+2
Currently we are interested in applying this concept to discover the asymptotic behavior of
n(3𝑘,2),which is the amount of numerical semigroups generated by a pair of coprime positive integers
whose genus is a power of 3

Diophantine Approximation

In the future,I would like to investigate problems relating Ergodic Theory and Number Theory
There is a well known result on Continued Fractions that states that for every irrational number there is
a sequence of best rational approximations,which are defined by the continued fraction expansion of
the number.However for generalized vectors the problem is not well understood yet. 
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Introduction

Research Experience

Undergraduate: Algebraic codes

Mixed Codes
Quantum Codes

Current: Analytic number theory

Distribution of integers in number fields
Bounded height problem
Multiple Dirichlet series

Today: Mixed codes (Joint with Feng)

Tianyi Mao (CUNY) Research Interests May 20, 2016 2 / 3



Mixed Codes

Definition

Let Ai (1 ≤ i ≤ s) be finite abelian groups. A = A1 ⊕ A2 ⊕ . . .⊕ As .
A mixed code C over A is a subset of A with size K = |C | ≥ 2.

Note: When all Ai (1 ≤ i ≤ s) are the same finite group or finite field, this
is just the classical code. One have all analog of definitions and bounds
(minimal distance, Hamming bounds (perfect codes) and Singleton bounds
(MDS codes), dual codes, etc.)

My Work

Calculate d(C⊥) for certain mixed codes coming from a partition of finite
fields.

Application

Construct asymmetric inhomogenous quantum codes (AIQC)

Tianyi Mao (CUNY) Research Interests May 20, 2016 3 / 3
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Ramification Polygons

1 Definition: Newton polygon of
ϕ(αx + α)

αn
.

2 One Segment (Greve): Gal(ϕ) = G1 o H

{ta,v : (Fp)m → (Fp)m : x 7→ xa + v | a ∈ H ′ ≤
GL(m, p), v ∈ (Fp)m}

3 Max Tame Subextension (Greve)

T = I

(
e1e0

√
(−1)v1γb1n1 ϕ0, . . . ,

e`e0

√
(−1)v`γb`n` ϕ0

)

Jonathan Milstead Galois Groups of Eisenstein Polynomials over Local Fields



Blocks

1 Greve
∆i = {α′∈ K | ϕ(α′) = 0 and νL(α′ − α1) ≥ mi + 1}

2 Starting Group (Ex. 3 segments)

Gal(ϕ) ≤ Gal(L1/L2) o (Gal(L2/L3) oGal(L3/Qp))

3 Residual Polynomial Classes (Milstead,Pauli)



α′ :

ϕ(α′) = 0 and either

vL(α′ − α1) > mi + 1 or

vL(α′ − α1) = mi + 1 and
−1 + α′

α1

αmi
1

∈ δFp





Jonathan Milstead Galois Groups of Eisenstein Polynomials over Local Fields
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Iwasawa theory

Let p be prime. A Zp-extension of a number field K is a tower of
extensions

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ · · · ⊂ K∞

with Gal(K∞/K ) isomorphic to the (additive) group Zp. Let

h(Kn) = class number of Kn

en = highest power of p dividing h(Kn).

Iwasawa proved there exist integer constants µ, λ, ν (depending
only on p and the Zp-extension) such that

en = µ · pn + λ · n + ν

for all n sufficiently large. Computing λ for K = Q(ζ) and p odd
was the subject of my MS thesis at the University of Vermont.



Bely̆ı maps

A Bely̆ı map is a morphism f : X → P1 of (compact, connected)
Riemann surfaces unramified away from 0, 1,∞.

Theorem (Bely̆ı 1979)

A curve X/C can be defined over Q ⇐⇒ X admits a Bely̆ı map.

Bely̆ı maps can be described combinatorially by dessins d’enfants.

s1

s1

s2s2

s3

s3

s4 s4

bc b

×

bc

b

×

bcb

×

bc

b

×

1

2

3

4

Could a database of Bely̆ı maps help us understand Gal(Q/Q)?



Enumerating extensions of p-adic fields with
given invariants
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Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified, thus Eisenstein 5085 Extensions

2. Valuation of Discriminant: 15 162 Extensions

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)} 108 Extensions

4. Residual polynomials: (2 + z2, 1 + z3) 27 Extensions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

...
...

...
...

...
...

...
...

...
...

33 * * * * * * * * * 0
32 * * * * * * * * * 0
31 6= 0 * * * * * * * * 0
30 0 0 0 0 0 0 0 0 0 1
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Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified, thus Eisenstein 5085 Extensions

2. Valuation of Discriminant: 15 162 Extensions

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)} 108 Extensions

4. Residual polynomials: (2 + z2, 1 + z3) 27 Extensions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

...
...

...
...

...
...

...
...

...
...

33 0 0 0 0 0 0 0 0 0 0
32 * 0 0 0 0 0 0 0 0 0
31 1 0 0 1 0 0 0 2 * 0
30 0 0 0 0 0 0 0 0 0 1

32 = 9 Polynomials



Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified

2. Valuation of Discriminant: 15

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)}, slopes −2,−1/3

4. Residual polynomials: (2 + z2, 1 + z3)

Each of the 27 extensions of Q3 with these invariants is generated
by exactly one of the polynomials:

x9 + 6x7 + 3x3 + 3 x9 + 3x8 + 6x7 + 3x3 + 3 x9 + 6x8 + 6x7 + 3x3 + 3
x9 + 6x7 + 3x3 + 12 x9 + 3x8 + 6x7 + 3x3 + 12 x9 + 6x8 + 6x7 + 3x3 + 12
x9 + 6x7 + 3x3 + 21 x9 + 3x8 + 6x7 + 3x3 + 21 x9 + 6x8 + 6x7 + 3x3 + 21

Each polynomial generates 3 distinct extensions.
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Some Areas of Interest
• Graph Theory

– Graph Coloring
– Bunk Bed Graphs

• Percolation, Connectivity

• Game Theory
– Combinatorial Games

• Nim, Dynamic Nim



Current Research
Bunk Bed Conjecture – Given a bunk bed graph with a probability 
function defined on the edges, the probability that s is connected to t is 
greater than the probability that s is connected to t’.

s

t’

s’

t
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About Me Things I did a long time ago

About Me

• I just finished my first year of graduate school here at UNCG.

• My undergraduate degree is in computer science, but I also
used to be a music major.

• My husband is a graduate student here as well, and we have
two little girls, ages 6 and 10.

• I really enjoy math, but I am still trying to find a specific
research topic.

• Dr. Pauli has kindly agreed to be my adviser and help me find
a thesis topic.

• My current areas of possible interest include algebra, topology
and logic.



About Me Things I did a long time ago

Things I did a long time ago

As a computer science major, I wrote a music theory learning and
testing program that used belief networks stored in a database to
assess a user’s level of readiness to progress through the subject
matter based on their performance in particular areas of a test.

I also assisted with a paper involving user-modelling for search
recommendations. I helped design and implement the XML-based
user model and assisted with implementing the program that
would create, read, and edit the user model.
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RESEARCH INTERESTS

Analytic, Probabilistic and Elementary Number Theory

1. Prime numbers

– general distribution

– special forms

2. Riemann ⇣-function

– properties of zeros

– non-vanishing

– higher derivatives

– monotonicity

– Dirichlet L-functions

3. Arithmetic functions

– probabilistic results

– special values
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Bely̆ı Maps

A Bely̆ı map is a nonconstant morphism φ : X → P1 of algebraic
curves unramified outside of {0, 1,∞}.

s1

s1

s2

s2

s3

s3

s4

s4

s5

s5

s6

s6

bc b

×

bc

b
×

bc

b

×

bc

b

×

bc

b

×

bc

b

×

1

2

3

4

5

6

Bely̆ı maps can be described combinatorially
by bicolored graphs, called dessins d’enfants.

In Esquisse d’un Programme,
Grothendieck describes an action of the Galois
group Gal(Q/Q) on the set of dessins d’enfants.

Numerical calculation of three-point
branched covers of the projective line,
M. Klug, M. Musty, S. Schiavone, J. Voight.

Sam Schiavone Research Interests



Hilbert Modular Forms

A classical modular form f : H → C has a Fourier or q-expansion
f (z) =

∑∞
n=0 anq

n where q = e2πiz .

Let F be a totally real quadratic number field with ring of integers

OF , e.g., F = Q(
√

5), OF = Z
[
1+

√
5

2

]
. A Hilbert modular form

F : H2 → C also has a q-expansion F (z1, z2) =
∑

ν∈OF ,≥0
aνq

ν1
1 qν22

where ν1, ν2 are the two embeddings of ν in R and
(q1, q2) = (e2πiz1 , e2πiz2).

We (joint work with B. Breen, J. Voight) are working on
developing an algorithm to quickly multiply q-expansions of Hilbert
modular forms.

Sam Schiavone Research Interests
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Introduction

Introduction

I’m a graduate student at Georgia Southern University. I just
finished my M.S. in Mathematics.
As a thesis topic, I studied the application of the circle method to
problems in partition theory.

Definition

Fix a to be 1 or 3. Let n 2 N. A partition of n is associated with the
Göllnitz–Gordon identities if each part is 4, ±a (mod 8). The number of
such partitions of n is denoted ga(n).

For a = 1 and n = 10, ga(n) = g1(10) = 5:

9+1
7+1+1+1
4+4+1+1
4+1+1+1+1+1+1
1+1+1+1+1+1+1+1+1+1

Nicolas Smoot UNCG Summer School in Computational Number Theory



Introduction

Result and Future Interests

Theorem

Let ga(n) be the number of type-a Göllnitz–Gordon partitions of n. Then

ga(n) =
⇡
p

2

4
p

16n + 4a� 5

X

(k,8)=1

����csc
✓
⇡ak

8

◆����
Aa,1(n, k)

k
I1

✓
⇡
p

16n + 4a� 5

8k

◆

+
⇡
p

2p
16n + 4a� 5

X

(k,8)=4

Aa,4(n, k)

k
I1

✓
⇡
p

16n + 4a� 5

4k

◆

+
2⇡p

16n + 4a� 5

X

(k,8)=8

Aa,8(n, k)

k
I1

✓
⇡
p

16n + 4a� 5

4k

◆

with Aa,d(n, k) sums of specific roots of unity.

The formula above, when truncated for 1  k  3
p

n, gives a numerical result which
di↵ers from the correct answer by less than ±0.33 for 1  n  200.
Interests include the theory of modular forms, the circle method, the Goldbach and
Waring problems.
Smoot, Nicolas A., ”A Partition Function Connected with the Göllnitz–Gordon
Identities” (2016). Electronic Theses And Dissertations. Paper 1389.
http://digitalcommons.georgiasouthern.edu/etd/1389.

Nicolas Smoot UNCG Summer School in Computational Number Theory
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I Got interested in number theory at high school,

I undergraduate studies at Masaryk Univerity, Brno,
bachelor thesis ”The Number Field Sieve Method”,

I currently studying masters with focus on algebra, geometry
and number theory (ALGANT).

Mathematical interests
algebraic number theory ∩ computational mathematics ∩
arithmetic/algebraic geometry ∩ cryptography ≈ (elliptic) curves
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Things I like to think about

1. How to construct elliptic curves over finite fields with a
prescribed number of points?

Connections to algebraic number theory and complex
multiplication theory.

2. Computatational questions:

I How to compute the Hilbert polynomial, how to compute the
Hilbert class field of a given number field?

I How to determine the endomorphism ring of a given elliptic
curve?

I Counting points on curves,...

3. Specific topics I am learning: isogeny volcanoes, modular
forms and theta functions, pairings, arithmetic on (Jacobians
of) hyperelliptic curves, ...
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Totally p-adic Numbers

Definition

If α is an algebraic number over Q with a minimal polynomial that
splits completely over Qp, then we say α is totally p-adic.

Definition

Given a prime p and a positive integer d, we define τd,p to the
minimal height among all totally p-adic non zero, non-root of
unity, algebraic numbers.



Research Questions

Theorem (S.)

Given a prime p,

τ2,p =

{
1
2 log

(
1+

√
5

2

)
if p ≡ 1, 4 (mod 5)

1
2 log 2 otherwise

Future Questions:

• Is there a congruence condition on p which will completely
categorize τ3,p?

• What is the smallest totally 3-adic algebraic number, not a
root of unity?

• What is the smallest totally p-adic algebraic number, not a
root of unity?
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Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p

(1)
∞ and p

(2)
∞ . Let H2 := H(mp

(2)
∞ ) denote the ray

class group modulo mp
(2)
∞ , which is a finite abelian group.

Given a class C ∈ H2, there is an associated partial zeta
function ζ(s, C) = ∑

Na−s, where the sum runs over all integral
ideals (necessarily rel. prime to m) lying within the class C. The
function ζ(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ζ(0, C) = 0 for all
C ∈ H2, but ζ ′(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e−2ζ
′(0,C) is an

algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ a2x
2 + a1x+ 1 ∈ Z[x].

For this reason, e−2ζ
′(0,C) is called a “Stark unit”. By class field

theory, there exists a ray class field F2 := F(mp
(2)
∞ ) with the

following special property: F2 is an abelian extension of F with
Gal(F2/F) ∼= H2. Stark’s conjecture states more precisely that
e−2ζ

′(0,C) ∈ F2 for all C ∈ H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.
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Quick intro

1 C0 and Analytic semigroups, at their core (in relation to evolution
equations), are a rigorous foundation to the challenge of defining the
exponential of an operator.

2 The Abstract Cauchy problem is an abstract evolution-type equation with
initial conditions, ie:

du

dt
+A(t)u = f (t)

u(0) = u0

3 Well, in the homogeneous case, you could say that u(t) = e�At . This of
course seems absurd (recall that A is an arbitrary operator), but, it turns out
it isn’t.
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Some Interesting Results

Theorem (Hille-Yosida Theorem)

A necessary and su�cient condition that a closed linear operator A with dense
domain DA be the infinitesimal generator of a C0 semigroup is that there exist
real numbers M and ! such that for every real � > !, � 2 ⇢(A), and:

||R(�; A)n||  M

(�� !)n

1 The theory of Analytic Semigroups can be used to solve the Abstract
Cauchy Problem under a set of conditions by means of constructing a
fundamental solution and convolving with our ”forcing function” f .

2 Proving that an operator is the infinitesimal generator of an Analytic
Semigroup is an even stronger condition than C0 semigroups, and this
automatically implies better regularity of solutions.

3 The language of semigroups allows for a rather natural way to define the
fractional power of an operator: A�↵ = 1

�(↵)

R1
0

e�sAs↵�1ds
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Computing Galois Groups

NOTATION:

F , F field, fixed algebraic closure
f (x) 2 F [x ] irreducible of degree n

a1, . . . , an roots of f in F
K = F (a1) stem field of f
K g = F (a1, . . . , an) splitting field of f
Aut(K/F ) automorphism group of K/F
Gal(f ) = Aut(K g/F ) transitive subgroup of Sn

QUESTION: How can we compute Gal(f )?

ANSWER: Eliminate all candidates except one using invariants of Gal(f ).
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A Family of Invariants

For 1  k  n, let Tk = a1 + · · · + ak . (recall: ai are roots of f )

Let H = Sym({1, . . . , k})⇥ Sym({k + 1, . . . , n}). So H ' Sk ⇥ Sn�k .

Let Rk(x) =
Q

g2Sn/H(x � T g
k ). So Degree(Rk(x)) =

�n
k

�
.

Rk(x) can be computed via resultants.

Theorem

Suppose Rk(x) is squarefree. Then K/F has m subfields of index k if and
only if Rk(x) has m irreducible factors of degree n/k if and only if Gal(f )
has m block systems consisting of n/k blocks of size k.

EXAMPLE:

Over Q, let f (x) = x4 � 4x3 + 8x2 � 4x + 1.

Then R2(f ) = (x2 � 4x + 2)(x2 � 4x + 6)(x2 � 4x + 8).

So Gal(f ) ' V4.
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